Workshop on homogeneous plane continua

L. C. Hoehn (loganh@nipissingu.ca) on joint work with L. G. Oversteegen

Nipissing University

March 9, 2016 50th Spring Topology and Dynamics Conference Baylor University

Continuum \equiv compact connected metric space.

• Arc: space homeomorphic to [0, 1]

- *Arc*: space homeomorphic to [0, 1]
- Graph: union of finitely many arcs meeting only in endpoints

- *Arc*: space homeomorphic to [0, 1]
- Graph: union of finitely many arcs meeting only in endpoints
- Tree: graph with no cycles

- *Arc*: space homeomorphic to [0, 1]
- Graph: union of finitely many arcs meeting only in endpoints
- Tree: graph with no cycles
- *Hilbert cube* = $[0, 1]^{\mathbb{N}}$, with metric *d*

Continuum \equiv compact connected metric space.

- *Arc*: space homeomorphic to [0, 1]
- Graph: union of finitely many arcs meeting only in endpoints
- *Tree*: graph with no cycles
- *Hilbert cube* = $[0, 1]^{\mathbb{N}}$, with metric *d*

Every compact metric space can be embedded in $[0,1]^{\mathbb{N}}$.

Continuum \equiv compact connected metric space.

- *Arc*: space homeomorphic to [0, 1]
- Graph: union of finitely many arcs meeting only in endpoints
- *Tree*: graph with no cycles
- *Hilbert cube* = $[0, 1]^{\mathbb{N}}$, with metric *d*

Every compact metric space can be embedded in $[0,1]^{\mathbb{N}}$.

Hausdorff distance $d_H(A, B) = \inf\{\varepsilon > 0 : N_{\varepsilon}(A) \supseteq B \text{ and } N_{\varepsilon}(B) \supseteq A\}$

Continuum \equiv compact connected metric space.

- *Arc*: space homeomorphic to [0, 1]
- Graph: union of finitely many arcs meeting only in endpoints
- Tree: graph with no cycles
- *Hilbert cube* = $[0, 1]^{\mathbb{N}}$, with metric *d*

Every compact metric space can be embedded in $[0,1]^{\mathbb{N}}$.

Hausdorff distance $d_H(A, B) = \inf\{\varepsilon > 0 : N_{\varepsilon}(A) \supseteq B \text{ and } N_{\varepsilon}(B) \supseteq A\}$

X is *tree-like* if for every $\varepsilon > 0$ there is an ε -map from X to a tree

Continuum \equiv compact connected metric space.

- Arc: space homeomorphic to [0,1]
- Graph: union of finitely many arcs meeting only in endpoints
- Tree: graph with no cycles
- *Hilbert cube* = $[0, 1]^{\mathbb{N}}$, with metric *d*

Every compact metric space can be embedded in $[0,1]^{\mathbb{N}}$.

Hausdorff distance $d_H(A, B) = \inf \{ \varepsilon > 0 : N_{\varepsilon}(A) \supseteq B \text{ and } N_{\varepsilon}(B) \supseteq A \}$

X is *tree-like* if for every $\varepsilon > 0$ there is an ε -map from X to a tree $\Leftrightarrow X$ is an inverse limit of trees

Continuum \equiv compact connected metric space.

- Arc: space homeomorphic to [0,1]
- Graph: union of finitely many arcs meeting only in endpoints
- Tree: graph with no cycles
- *Hilbert cube* = $[0, 1]^{\mathbb{N}}$, with metric *d*

Every compact metric space can be embedded in $[0,1]^{\mathbb{N}}$.

Hausdorff distance $d_H(A, B) = \inf\{\varepsilon > 0 : N_{\varepsilon}(A) \supseteq B \text{ and } N_{\varepsilon}(B) \supseteq A\}$

X is *tree-like* if for every $\varepsilon > 0$ there is an ε -map from X to a tree $\Leftrightarrow X$ is an inverse limit of trees \Leftrightarrow There is a sequence of trees $\langle T_n \rangle_{n=1}^{\infty}$ in $[0,1]^{\mathbb{N}}$ and maps $f_n : X \to T_n$ such that $f_n \to \operatorname{id}_X$ (uniformly)

Continua: basics 2 X is *decomposable* if $X = A \cup B$ for some subcontinua $A, B \subsetneq X$

X is *decomposable* if $X = A \cup B$ for some subcontinua $A, B \subsetneq X$ *Indecomposable* = not decomposable

X is *decomposable* if $X = A \cup B$ for some subcontinua $A, B \subsetneq X$ *Indecomposable* = not decomposable

Hereditarily indecomposable = every subcontinuum is indecomposable

X is *decomposable* if $X = A \cup B$ for some subcontinua $A, B \subsetneq X$ Indecomposable = not decomposable Hereditarily indecomposable = every subcontinuum is indecomposable

Theorem (Bing 1952)

A continuum is homeomorphic to the pseudo-arc if and only if it is hereditarily indecomposable and arc-like.

X is *decomposable* if $X = A \cup B$ for some subcontinua $A, B \subsetneq X$ Indecomposable = not decomposable Hereditarily indecomposable = every subcontinuum is indecomposable

Theorem (Bing 1952)

A continuum is homeomorphic to the pseudo-arc if and only if it is hereditarily indecomposable and arc-like.

X has *span zero* if any continuum Z in $X \times X$ with $\pi_1(Z) \subseteq \pi_2(Z)$ meets $\Delta X = \{(x, x) : x \in X\}$

X is *decomposable* if $X = A \cup B$ for some subcontinua $A, B \subsetneq X$ Indecomposable = not decomposable Hereditarily indecomposable = every subcontinuum is indecomposable

Theorem (Bing 1952)

A continuum is homeomorphic to the pseudo-arc if and only if it is hereditarily indecomposable and arc-like.

X has *span zero* if any continuum Z in $X \times X$ with $\pi_1(Z) \subseteq \pi_2(Z)$ meets $\Delta X = \{(x, x) : x \in X\}$

- Arc-like \Rightarrow span zero
- Span zero \Rightarrow tree-like, but span zero \Rightarrow arc-like in general

X is *decomposable* if $X = A \cup B$ for some subcontinua $A, B \subsetneq X$ Indecomposable = not decomposable Hereditarily indecomposable = every subcontinuum is indecomposable

Theorem (Bing 1952)

A continuum is homeomorphic to the pseudo-arc if and only if it is hereditarily indecomposable and arc-like.

X has *span zero* if any continuum Z in $X \times X$ with $\pi_1(Z) \subseteq \pi_2(Z)$ meets $\Delta X = \{(x, x) : x \in X\}$

- Arc-like \Rightarrow span zero
- Span zero \Rightarrow tree-like, but span zero \Rightarrow arc-like in general

Theorem (Oversteegen-H 2015)

A continuum is homeomorphic to the pseudo-arc if and only if it is hereditarily indecomposable and has span zero.

Simple fold on a graph *G*:

• Subgraphs
$$G_1, G_2, G_3 \subset G$$
 such that

•
$$G_1 \cup G_3 = G$$
 and $G_1 \cap G_3 = G_2$;

•
$$\overline{G_1 \smallsetminus G_2} \cap \overline{G_3 \smallsetminus G_2} = \emptyset.$$

• Graph $F = F_1 \cup F_2 \cup F_3$ and map $\varphi : F \to G$ such that

•
$$\varphi \upharpoonright_{F_i} : F_i \to G_i$$
 is a homeomorphism for each $i = 1, 2, 3$;

•
$$\partial G_1 = \varphi(F_1 \cap F_2), \ \partial G_3 = \varphi(F_2 \cap F_3), \ \text{and} \ F_1 \cap F_3 = \emptyset.$$

Simple fold on a graph *G*:

•
$$\partial G_1 = \varphi(F_1 \cap F_2), \ \partial G_3 = \varphi(F_2 \cap F_3), \text{ and } F_1 \cap F_3 = \emptyset.$$

Simple fold on a graph *G*:

$$\begin{array}{c} F \\ \varphi \downarrow \\ G \end{array}$$

Theorem (cf. Krasinkiewicz-Minc 1977)

Simple fold on a graph *G*:

• $\partial G_1 = \varphi(F_1 \cap F_2), \ \partial G_3 = \varphi(F_2 \cap F_3), \text{ and } F_1 \cap F_3 = \emptyset.$

Theorem (cf. Krasinkiewicz-Minc 1977)

Simple fold on a graph *G*:

• $\partial G_1 = \varphi(F_1 \cap F_2), \ \partial G_3 = \varphi(F_2 \cap F_3), \ \text{and} \ F_1 \cap F_3 = \emptyset.$

Theorem (cf. Krasinkiewicz-Minc 1977)

Simple fold on a graph *G*:

▶ $\partial G_1 = \varphi(F_1 \cap F_2), \ \partial G_3 = \varphi(F_2 \cap F_3), \ \text{and} \ F_1 \cap F_3 = \emptyset.$

Theorem (cf. Krasinkiewicz-Minc 1977)

Simple fold on a graph *G*:

• $\partial G_1 = \varphi(F_1 \cap F_2), \ \partial G_3 = \varphi(F_2 \cap F_3), \ \text{and} \ F_1 \cap F_3 = \emptyset.$

Theorem (cf. Krasinkiewicz-Minc 1977)

X is homogeneous if $\forall x, y \in X \exists h : X \xrightarrow{\approx} X h(x) = y$

X is homogeneous if $\forall x, y \in X \exists h : X \xrightarrow{\approx} X h(x) = y$

X is homogeneous if $\forall x, y \in X \exists h : X \xrightarrow{\approx} X h(x) = y$

Examples: Connected manifolds, topological groups

X is homogeneous if $\forall x, y \in X \exists h : X \xrightarrow{\approx} X h(x) = y$

Examples: Connected manifolds, topological groups

Question (Knaster-Kuratowski 1920)

Is the circle the only non-degenerate homogeneous continuum in \mathbb{R}^2 ?

X is homogeneous if $\forall x, y \in X \exists h : X \xrightarrow{\approx} X h(x) = y$

Examples: Connected manifolds, topological groups

Question (Knaster-Kuratowski 1920)

Is the circle the only non-degenerate homogeneous continuum in $\mathbb{R}^2?$

Answer: No. Known examples: circle, pseudo-arc, circle of pseudo-arcs

Theorem (Jones 1955)

If $M \subset \mathbb{R}^2$ is decomposable and homogeneous, then M is a circle of X's, where X is indecomposable and homogeneous.

Theorem (Jones 1955)

If $M \subset \mathbb{R}^2$ is decomposable and homogeneous, then M is a circle of X's, where X is indecomposable and homogeneous.

Theorem (Hagopian 1976)

If $X \subset \mathbb{R}^2$ is indecomposable and homogeneous, then X is hereditarily indecomposable.

Theorem (Jones 1955)

If $M \subset \mathbb{R}^2$ is decomposable and homogeneous, then M is a circle of X's, where X is indecomposable and homogeneous.

Theorem (Hagopian 1976)

If $X \subset \mathbb{R}^2$ is indecomposable and homogeneous, then X is hereditarily indecomposable.

Theorem (Oversteegen-Tymchatyn 1982)

If $X \subset \mathbb{R}^2$ is indecomposable and homogeneous, then X has span zero.

Theorem (Jones 1955)

If $M \subset \mathbb{R}^2$ is decomposable and homogeneous, then M is a circle of X's, where X is indecomposable and homogeneous.

Theorem (Hagopian 1976)

If $X \subset \mathbb{R}^2$ is indecomposable and homogeneous, then X is hereditarily indecomposable.

Theorem (Oversteegen-Tymchatyn 1982)

If $X \subset \mathbb{R}^2$ is indecomposable and homogeneous, then X has span zero.

Theorem (Oversteegen-H 2015)

A continuum is homeomorphic to the pseudo-arc if and only if it is hereditarily indecomposable and has span zero.

Span and separators Suppose $X \subset [0,1]^{\mathbb{N}}$ has span zero

Span and separators

Suppose $X \subset [0,1]^{\mathbb{N}}$ has span zero $\Rightarrow X$ is tree-like.
Theorem

 $\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \text{such that if } T \text{ is a tree and } I = [p, q] \text{ is an arc, with} d_H(T, X) < \delta \text{ and } d_H(I, X) < \delta, \text{ then the set}$

 $M = \{(x, y) \in T \times I : d(x, y) < \frac{\varepsilon}{3}\}$

separates $T \times \{p\}$ from $T \times \{q\}$.

Theorem

 $\forall \varepsilon > 0 \quad \exists \delta > 0 \quad such that if T is a tree and I = [p, q] is an arc, with <math>d_H(T, X) < \delta$ and $d_H(I, X) < \delta$, then the set

 $M = \{(x, y) \in T \times I : d(x, y) < \frac{\varepsilon}{3}\}$

separates $T \times \{p\}$ from $T \times \{q\}$.

Fix $\varepsilon > 0$, take such $\delta \leq \frac{\varepsilon}{3}$.

Theorem

 $\forall \varepsilon > 0 \quad \exists \delta > 0 \quad such that if T is a tree and I = [p, q] is an arc, with$ $<math>d_H(T, X) < \delta$ and $d_H(I, X) < \delta$, then the set

 $M = \{(x, y) \in T \times I : d(x, y) < \frac{\varepsilon}{3}\}$

separates $T \times \{p\}$ from $T \times \{q\}$.

Fix $\varepsilon > 0$, take such $\delta \leq \frac{\varepsilon}{3}$. Let $T \subset [0,1]^{\mathbb{N}}$ be a tree, $f : X \to T$ such that $f =_{\delta} \operatorname{id}_X$.

Theorem

 $\forall \varepsilon > 0 \quad \exists \delta > 0 \quad such that if T is a tree and I = [p, q] is an arc, with <math>d_H(T, X) < \delta$ and $d_H(I, X) < \delta$, then the set

 $M = \{(x, y) \in T \times I : d(x, y) < \frac{\varepsilon}{3}\}$

separates $T \times \{p\}$ from $T \times \{q\}$.

Theorem

 $\forall \varepsilon > 0 \quad \exists \delta > 0 \quad such that if T is a tree and I = [p, q] is an arc, with <math>d_H(T, X) < \delta$ and $d_H(I, X) < \delta$, then the set

 $M = \{(x, y) \in T \times I : d(x, y) < \frac{\varepsilon}{3}\}$

separates $T \times \{p\}$ from $T \times \{q\}$.

Theorem

 $\forall \varepsilon > 0 \quad \exists \delta > 0 \quad such that if T is a tree and I = [p, q] is an arc, with <math>d_H(T, X) < \delta$ and $d_H(I, X) < \delta$, then the set

 $M = \{(x, y) \in T \times I : d(x, y) < \frac{\varepsilon}{3}\}$

separates $T \times \{p\}$ from $T \times \{q\}$.

Theorem

 $\forall \varepsilon > 0 \quad \exists \delta > 0 \quad such that if T is a tree and I = [p, q] is an arc, with <math>d_H(T, X) < \delta$ and $d_H(I, X) < \delta$, then the set

 $M = \{(x, y) \in T \times I : d(x, y) < \frac{\varepsilon}{3}\}$

separates $T \times \{p\}$ from $T \times \{q\}$.

Define $h: X \to M$ by $h = (\varphi \times id) \circ \theta \circ g$.

Define $h: X \to M$ by $h = (\varphi \times id) \circ \theta \circ g$.

Idea: Find sequence of simple folds $T \leftarrow F_1 \leftarrow F_2 \leftarrow \cdots \leftarrow F_n$ such that in F_n , separator has a subset S' such that π_1 maps S' one-to-one onto F_n .

(Informal definition) A separator $S \subset G \times [0,1]$ has a *stairwell structure* if $S = S_1 \cup S_2 \cup \cdots \cup S_k$, where

(Informal definition)

A separator $S \subset G \times [0,1]$ has a *stairwell structure* if $S = S_1 \cup S_2 \cup \cdots \cup S_k$, where

• π_1 is one-to-one on each S_i

- A separator $\mathcal{S} \subset \mathcal{G} imes [0,1]$ has a *stairwell structure* if
- $S = S_1 \cup S_2 \cup \cdots \cup S_k$, where
 - π_1 is one-to-one on each S_i
 - ② S_i connects only to S_{i-1} and S_{i+1} at its "ends"; S_1 has no "lower end" and S_k has no "upper end"

- A separator $\mathcal{S} \subset \mathcal{G} imes [0,1]$ has a *stairwell structure* if
- $S = S_1 \cup S_2 \cup \cdots \cup S_k$, where
 - π_1 is one-to-one on each S_i
 - ② S_i connects only to S_{i-1} and S_{i+1} at its "ends"; S_1 has no "lower end" and S_k has no "upper end"
 - **③** For a small neighborhood V of $S_i \cap S_{i+1}$, $\pi_1(S_i \cap V) = \pi_1(S_{i+1} \cap V)$

- A separator $\mathcal{S} \subset \mathcal{G} imes [0,1]$ has a *stairwell structure* if
- $S = S_1 \cup S_2 \cup \cdots \cup S_k$, where
 - π_1 is one-to-one on each S_i
 - ② S_i connects only to S_{i-1} and S_{i+1} at its "ends"; S_1 has no "lower end" and S_k has no "upper end"
 - **③** For a small neighborhood V of $S_i \cap S_{i+1}$, $\pi_1(S_i \cap V) = \pi_1(S_{i+1} \cap V)$
 - From any one component of the complement of π₁(S_i) ("floor"), you never see S_i going both up and down

- A separator $\mathcal{S} \subset \mathcal{G} imes [0,1]$ has a *stairwell structure* if
- $S = S_1 \cup S_2 \cup \cdots \cup S_k$, where
 - π_1 is one-to-one on each S_i
 - ② S_i connects only to S_{i-1} and S_{i+1} at its "ends"; S_1 has no "lower end" and S_k has no "upper end"
 - **③** For a small neighborhood V of $S_i \cap S_{i+1}$, $\pi_1(S_i \cap V) = \pi_1(S_{i+1} \cap V)$
 - From any one component of the complement of $\pi_1(S_i)$ ("floor"), you never see S_i going both up and down
 - The projections of the ends of the S_i's are disjoint from each other and from the branch points of G

(Informal definition)

- A separator $\mathcal{S} \subset \mathcal{G} imes [0,1]$ has a *stairwell structure* if
- $S = S_1 \cup S_2 \cup \cdots \cup S_k$, where
 - π_1 is one-to-one on each S_i
 - **②** S_i connects only to S_{i-1} and S_{i+1} at its "ends"; S_1 has no "lower end" and S_k has no "upper end"
 - **③** For a small neighborhood V of $S_i \cap S_{i+1}$, $\pi_1(S_i \cap V) = \pi_1(S_{i+1} \cap V)$
 - From any one component of the complement of $\pi_1(S_i)$ ("floor"), you never see S_i going both up and down
 - The projections of the ends of the S_i's are disjoint from each other and from the branch points of G

Theorem

Given any separator $M \subseteq G \times (0,1)$ and any open set $U \subseteq G \times (0,1)$ with $M \subseteq U$, there exists a separator $S \subset U$ with a stairwell structure of odd height.

Questions 1

X is *weakly chainable* if it is the continuous image of the pseudo-arc

Questions 1

X is *weakly chainable* if it is the continuous image of the pseudo-arc

• Arc-like \Rightarrow span zero \Rightarrow weakly chainable

Questions 1

X is *weakly chainable* if it is the continuous image of the pseudo-arc

• Arc-like \Rightarrow span zero \Rightarrow weakly chainable

Question

Is the pseudo-arc the only hereditarily indecomposable and weakly chainable continuum?
X is *weakly chainable* if it is the continuous image of the pseudo-arc

• Arc-like \Rightarrow span zero \Rightarrow weakly chainable

Question

Is the pseudo-arc the only hereditarily indecomposable and weakly chainable continuum?

A homogeneous continuum is tree-like if and only if it is hereditarily indecomposable (Rogers 1982, Krupski-Prajs 1990).

X is *weakly chainable* if it is the continuous image of the pseudo-arc

• Arc-like \Rightarrow span zero \Rightarrow weakly chainable

Question

Is the pseudo-arc the only hereditarily indecomposable and weakly chainable continuum?

A homogeneous continuum is tree-like if and only if it is hereditarily indecomposable (Rogers 1982, Krupski-Prajs 1990).

Question

Is the pseudo-arc the only homogeneous tree-like continuum?

X is *hereditarily equivalent* if it is homeomorphic to each of its non-degenerate subcontinua

X is *hereditarily equivalent* if it is homeomorphic to each of its non-degenerate subcontinua

• Known examples: arc and pseudo-arc

X is *hereditarily equivalent* if it is homeomorphic to each of its non-degenerate subcontinua

- Known examples: arc and pseudo-arc
- The arc is the only decomposable hereditarily equivalent continuum (Henderson 1960)

X is *hereditarily equivalent* if it is homeomorphic to each of its non-degenerate subcontinua

- Known examples: arc and pseudo-arc
- The arc is the only decomposable hereditarily equivalent continuum (Henderson 1960)
- An indecomposable hereditarily equivalent continuum is tree-like (Cook 1970)

X is *hereditarily equivalent* if it is homeomorphic to each of its non-degenerate subcontinua

- Known examples: arc and pseudo-arc
- The arc is the only decomposable hereditarily equivalent continuum (Henderson 1960)
- An indecomposable hereditarily equivalent continuum is tree-like (Cook 1970)

Our techniques can also prove that there are no other hereditarily equivalent continua in $\mathbb{R}^2.$

X is *hereditarily equivalent* if it is homeomorphic to each of its non-degenerate subcontinua

- Known examples: arc and pseudo-arc
- The arc is the only decomposable hereditarily equivalent continuum (Henderson 1960)
- An indecomposable hereditarily equivalent continuum is tree-like (Cook 1970)

Our techniques can also prove that there are no other hereditarily equivalent continua in $\mathbb{R}^2.$

Question

Are there any other hereditarily equivalent continua?

X is *hereditarily equivalent* if it is homeomorphic to each of its non-degenerate subcontinua

- Known examples: arc and pseudo-arc
- The arc is the only decomposable hereditarily equivalent continuum (Henderson 1960)
- An indecomposable hereditarily equivalent continuum is tree-like (Cook 1970)

Our techniques can also prove that there are no other hereditarily equivalent continua in $\mathbb{R}^2.$

Question

Are there any other hereditarily equivalent continua?

Question

Is every hereditarily equivalent continuum weakly chainable?