Nipissing University - Mathematics

Divisibility Properties of the Fibonacci Numbers

$1,1,2,3,5$, $8,13,21,34,55$, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, ...
$1,1,2,3,5,8,13$,
$21,34,55,89,144,233,377,610$,
987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, ...

1, 1, 2, 3,
$5,8,13,21$,
34, 55, 89, 144,
233, 377, 610, 987,
1597, 2584, 4181, 6765,
10946, 17711, 28657, 46368,
$75025,121393,196418,317811, \ldots$
$F_{12}=144=2 \times 2 \times 2 \times 2 \times 3 \times 3$
$F_{18}=2584=2 \times 2 \times 2 \times 17 \times 19$
$\operatorname{gcd}\left(\boldsymbol{F}_{12}, \boldsymbol{F}_{18}\right)=\boldsymbol{F}_{\operatorname{gcd}(12,18)}=\boldsymbol{F}_{6}=8$

DEPT. OF COMP. SCIENCE \&
MATHEMATICS NiPISSING UNIVERSITY
100 College Drive, Box 5002 ,
NORTH BAY, ON, CANADA P1B 8L7
TEL: 705.474 .3450
FAX: 705.474 .1947 NUINFO@NIPISSINGU.CA

WWW.NIPISSINGU.CA/MATHEMATICS

Recall that Fibonacci numbers are the members of the sequence $1,1,2,3,5,8, \ldots$, so that every next number is the sum of two previous numbers.

It is a part of the mathematical folklore that every $5^{\text {th }}$ Fibonacci number is divisible by 5 . It also happens that 5 is the $5^{\text {th }}$ Fibonacci number.
In fact, a more general statement is true:
Every n-th Fibonacci number (i.e. number $F_{n k}$ for some k) is divisible by F_{n}, the n-th Fibonacci number.
Among the different ways to prove that is to use the matrix

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right), \quad A^{n}=\left(\begin{array}{cc}
F_{n-1} & F_{n} \\
F_{n} & F_{n+1}
\end{array}\right) .
$$

Using the fact that $\quad A^{m+n}=A^{m} \times A^{n}$ and comparing the $(1,2)$ entries of the two matrices, we obtain a helpful representation of F_{m+n} :

$$
F_{m+n}=F_{m-1} F_{n}+F_{m} F_{n+1}
$$

Assuming $\mathrm{m}=\mathrm{nk}$, mathematical induction implies that $F_{n k}$ is divisible by F_{n}.
Interestingly, the same formula allows us to prove that:
F_{n} does not divide $F_{k}, k>n$, unless n divides k.
Recalling that two consecutive Fibonacci numbers are always relatively prime, we can establish the property of the Euclidean Algorithm, namely if $m>n$ are two integers such that $m=q n+r, 0<r<n-1$, then

$$
\begin{gathered}
\operatorname{gcd}\left(F_{m}, F_{n}\right)=\operatorname{gcd}\left(F_{n}, F_{r}\right) . \\
F_{m}=F_{q n+r}=F_{q n} F_{r+1}+F_{q n-1} F_{r}
\end{gathered}
$$

Therefore, the Euclidean Algorithm on the pair (F_{m}, F_{n}) has the same run as the Euclidean Algorithm on their indices (m, n) and

$$
\operatorname{gcd}\left(F_{m}, F_{n}\right)=F_{\operatorname{gcd}(m, n)}
$$

