NIPISSING UNIVERSITY - MATHEMATICS

Morley's trisector theorem

FAX: 705.474.1947

NUINFO@NIPISSINGU.CA

WWW.NIPISSINGU.CA/MATHEMATICS

Morley's trisector theorem is named after the English-born American mathematician Frank Morley, who proved it in 1899. It is a surprisingly beautiful result in plane geometry:

The points of intersection of the adjacent angle trisectors of a triangle form an equilateral triangle.

<u>First proof</u> is the so-called backward proof. We start with the equilateral triangle ΔXYZ and take its sides to have unit length. Our goal is to construct the triangle ΔABC having angles 3α , 3β , 3γ where α , β , γ are any positive angle measures such that $\alpha + \beta + \gamma = 60^{\circ}$. Thus ΔXYZ is the Morley triangle of ΔABC .

First we construct the triangle ΔAZY such that $4ZAY = \alpha, 4AYZ = 60^{\circ} + \gamma, 4AZY = 60^{\circ} + \beta.$ From the law of sines for ΔAZY , we have $AY = \frac{AY}{YZ} = \frac{\sin (60^{\circ} + \beta)}{\sin \alpha}$. Similarly, constructing ΔCXY such that $4XCY = \gamma, 4CYX = 60^{\circ} + \alpha, 4CXY = 60^{\circ} + \beta$, we obtain $CY = \frac{CY}{YX} = \frac{\sin (60^{\circ} + \beta)}{\sin \gamma}$. Thus, in ΔACY we have $\frac{AY}{CY} = \frac{\sin \gamma}{\sin \alpha}$. Also, $4AYC = 360^{\circ} - 4XYZ - 4AYZ - 4CYX = 360^{\circ} - 60^{\circ} - (60^{\circ} + \gamma) - (60^{\circ} + \alpha) = 180^{\circ} - \alpha - \gamma = 120^{\circ} + \beta$. Therefore, in $\Delta ACY \neq CAY + 4ACY = \alpha + \gamma$ and $\frac{\sin 4ACY}{\sin 4CAY} = \frac{\sin \gamma}{\sin \alpha}$. Given that $\alpha + \gamma < 60^{\circ}$, we must have $4CAY = \alpha, 4ACY = \gamma$. Similar considerations establish the angles in ΔABZ and ΔBCX . In triangle ΔABC the lines AZ, AY, BX, BZ, CY, CXare the trisectors of the angles 4CAB, 4ABC, 4BCA, respectively, as we intended to show.

Second proof does not use trigonometry and is as follows. Starting with the equilateral ΔXYZ and the angle measures $\alpha + \beta + \gamma = 60^{\circ}$, we proceed as follows. Point *P* is constructed on the altitude/median/angle bisector through vertex *X* in ΔXYZ , outside of the triangle so that $4YPZ = 60^{\circ} + 2\alpha$. Similarly, we construct the points *Q* opposite *Y* with $4ZQX = 60^{\circ} + 2\beta$ and *R* opposite *Z* with $4XRY = 60^{\circ} + 2\gamma$. Let the lines *PZ* and *RZ* intersect at point *B*. Using the fact that the angle measures of the interior angles in a quadrilateral add up to 360° , we obtain $4PBR = \beta$ since $4PYZ = 60^{\circ} - \alpha$, $4RYX = 60^{\circ} - \gamma$, $4XYZ = 60^{\circ} \Rightarrow 4PYR = 180^{\circ} - \alpha - \gamma$. Similarly, the lines *PY* and *QX* intersect at point C such that $4PCQ = \gamma$. The point *X* lies, by construction on the angle bisector of 4CPB. Construct a circle, centered at *X* that touches the lines *PB* and *PC*. Let the tangents to this circle from points *B* and *C* touch the circle at points *T* and *U*, and intersect at point *V*. Then $4TBX = 4PBX = \beta$ and $4UCX = 4PCX = \gamma$. Thus, in the quadrilateral *CPBV* we have $4CPB = 60^{\circ} + 2\alpha$, $4PBV = 2\beta$, $4VCP = 2\gamma$. Therefore, $4BVC = 180^{\circ}$ and the line *BC* is tangent to the circle (points *T*, *U*, *V* coincide). The point *A* is the intersection of the lines *QZ* and *RY*, and the tangencies in ΔARB and ΔAQC follow by symmetry.

