Nipissing University - Mathematics

Morley's trisector theorem

First proof

Second proof

DEPT. OF COMP. SCIENCE \& MATHEMATICS Nipissing University 100 College Drive, Box 5002, NORth Bay, ON, CANADA P1B 8L7

TEL: 705.474.3450
FAX: 705.474 .1947
NUINFO@NIPISSINGU.CA

Morley's trisector theorem is named after the English-born American mathematician Frank Morley, who proved it in 1899 . It is a surprisingly beautiful result in plane geometry:

The points of intersection of the adjacent angle trisectors of a triangle form an equilateral triangle.

First proof is the so-called backward proof. We start with the equilateral triangle $\triangle X Y Z$ and take its sides to have unit length. Our goal is to construct the triangle $\triangle A B C$ having angles $3 \alpha, 3 \beta, 3 \gamma$ where α, β, γ are any positive angle measures such that $\alpha+\beta+\gamma=60^{\circ}$. Thus $\triangle X Y Z$ is the Morley triangle of $\triangle A B C$.

First we construct the triangle $\triangle A Z Y$ such that
$\Varangle Z A Y=\alpha, \Varangle A Y Z=60^{\circ}+\gamma, \Varangle A Z Y=60^{\circ}+\beta$.
From the law of sines for $\triangle A Z Y$, we have $A Y=\frac{A Y}{Y Z}=\frac{\sin \left(60^{\circ}+\beta\right)}{\sin \alpha}$. Similarly, constructing $\Delta C X Y$ such that $\Varangle X C Y=\gamma, \Varangle C Y X=60^{\circ}+\alpha, \Varangle C X Y=60^{\circ}+\beta$, we obtain
$C Y=\frac{C Y}{Y X}=\frac{\sin \left(60^{\circ}+\beta\right)}{\sin \gamma}$. Thus, in $\triangle A C Y$ we have $\frac{A Y}{C Y}=\frac{\sin \gamma}{\sin \alpha}$. Also,
$\Varangle A Y C=360^{\circ}-\Varangle X Y Z-\Varangle A Y Z-\Varangle C Y X=360^{\circ}-60^{\circ}-\left(60^{\circ}+\gamma\right)-\left(60^{\circ}+\alpha\right)=180^{\circ}-$ $\alpha-\gamma=120^{\circ}+\beta$. Therefore, in $\triangle A C Y \Varangle C A Y+\Varangle A C Y=\alpha+\gamma$ and $\frac{\sin \Varangle A C Y}{\sin \measuredangle C A Y}=\frac{\sin \gamma}{\sin \alpha}$. Given that $\alpha+\gamma<60^{\circ}$, we must have $\Varangle C A Y=\alpha, \Varangle A C Y=\gamma$. Similar considerations establish the angles in $\triangle A B Z$ and $\triangle B C X$. In triangle $\triangle A B C$ the lines $A Z, A Y, B X, B Z, C Y, C X$ are the trisectors of the angles $\Varangle C A B, \Varangle A B C, \Varangle B C A$, respectively, as we intended to show.

Second proof does not use trigonometry and is as follows. Starting with the equilateral $\triangle X Y Z$ and the angle measures $\alpha+\beta+\gamma=60^{\circ}$, we proceed as follows. Point P is constructed on the altitude/median/angle bisector through vertex X in $\triangle X Y Z$, outside of the triangle so that $\Varangle Y P Z=60^{\circ}+2 \alpha$. Similarly, we construct the points Q opposite Y with $\Varangle Z Q X=60^{\circ}+2 \beta$ and R opposite Z with $\Varangle X R Y=60^{\circ}+2 \gamma$. Let the lines $P Z$ and $R Z$ intersect at point B. Using the fact that the angle measures of the interior angles in a quadrilateral add up to 360°, we obtain $\Varangle P B R=\beta$ since $\Varangle P Y Z=60^{\circ}-\alpha, \Varangle R Y X=60^{\circ}-$ $\gamma, \measuredangle X Y Z=60^{\circ} \Rightarrow \measuredangle P Y R=180^{\circ}-\alpha-\gamma$. Similarly, the lines $P Y$ and $Q X$ intersect at point C such that $\Varangle P C Q=\gamma$. The point X lies, by construction on the angle bisector of $\Varangle C P B$. Construct a circle, centered at X that touches the lines $P B$ and $P C$. Let the tangents to this circle from points B and C touch the circle at points T and U, and intersect at point V. Then $\Varangle T B X=\Varangle P B X=\beta$ and $\Varangle U C X=\Varangle P C X=\gamma$. Thus, in the quadrilateral $C P B V$ we have $\Varangle C P B=60^{\circ}+2 \alpha, \Varangle P B V=2 \beta, \Varangle V C P=2 \gamma$. Therefore, $\Varangle B V C=180^{\circ}$ and the line $B C$ is tangent to the circle (points T, U, V coincide). The point A is the intersection of the lines $Q Z$ and $R Y$, and the tangencies in $\triangle A R B$ and $\triangle A Q C$ follow by symmetry.

