
Using the Raspberry Pi with the cRio
robot:

Lab Manual

April 2017
Logan Burden

INTRODUCTION

This lab manual is instructional on using the raspberry pi as the primary platform for running code,
not the cRio. Initially, you will need to configure the Raspberry Pi. The Raspberry Pi is powered by
5V DC over micro USB, and as such a USB cable has been wired to the power distribution board
for this purpose.

Python is the language used for this lab so a working install of Python2 is required. Raspbian has
python installed by default, and this configuration will be assumed for the lab.

A Basic understanding of Linux is assumed for this lab manual.

INSTALLING FROM WINDOWS

From: https://www.raspberrypi.org/documentation/installation/installing-images/windows.md

Insert the SD card into your SD card reader. You can use the SD card slot if you have one, or an SD
adapter in a USB port. Note the drive letter assigned to the SD card. You can see the drive letter in
the left hand column of Windows Explorer, for example G:

•Download the Win32DiskImager utility from the Sourceforge Project page as an installer

file, and run it to install the software.

•Run the Win32DiskImager utility from your desktop or menu.

•Select the image file you extracted earlier.

•Select the drive letter of the SD card in the device box. Be careful to select the correct

drive: if you choose the wrong drive you could destroy the data on your computer's hard
disk! If you are using an SD card slot in your computer and can't see the drive in the
Win32DiskImager window, try using an external SD adapter.

•Click 'Write' and wait for the write to complete.

•Exit the imager and eject the SD card.

INSTALLING FROM LINUX

From: https://www.raspberrypi.org/documentation/installation/installing-images/linux.md

Please note that the use of the dd tool can overwrite any partition of your
machine. If you specify the wrong device in the instructions below, you could
delete your primary Linux partition. Please be careful.

DISCOVERING THE SD CARD MOUNTPOINT AND UNMOUNTING IT

•Run df -h to see what devices are currently mounted.

https://www.raspberrypi.org/documentation/installation/installing-images/windows.md
https://www.raspberrypi.org/documentation/installation/installing-images/linux.md
http://sourceforge.net/projects/win32diskimager/

•If your computer has a slot for SD cards, insert the card. If not, insert the card into an SD

card reader, then connect the reader to your computer.

•Run df -h again. The new device that has appeared is your SD card. If no device appears,

then your system is not automounting devices. In this case, you will need to search for the

device name using another method. The dmesg | tail command will display the most

recent system messages, which should contain information on the naming of the SD card
device. The naming of the device will follow the format described in the next paragraph.
Note that if the SD card was not automounted, you do not need to unmount later.

•The left column of the results from df -h command gives the device name of your SD

card. It will be listed as something like /dev/mmcblk0p1 or /dev/sdX1, where X is a

lower case letter indicating the device. The last part (p1 or 1 respectively) is the partition

number. You want to write to the whole SD card, not just one partition. You therefore need
to remove that part from the name. You should see something

like /dev/mmcblk0 or /dev/sdX as the device name for the whole SD card. Note that

the SD card can show up more than once in the output of df. It will do this if you have

previously written a Raspberry Pi image to this SD card, because the Raspberry Pi SD
images have more than one partition.

•Now you have noted the device name, you need to unmount it so that files can't be read or

written to the SD card while you are copying over the SD image.

•Run umount /dev/sdX1, replacing sdX1 with whatever your SD card's device name is

(including the partition number).

•If your SD card shows up more than once in the output of df because it has multiple

partitions on the SD card. You should unmount all of these partitions.

COPYING THE IMAGE TO THE SD CARD

•In a terminal window, write the image to the card with the command below, making sure

you replace the input file if= argument with the path to your .img file, and

the /dev/sdX in the output file of= argument with the correct device name. This is very

important, as you will lose all data on the hard drive if you provide the wrong device name.
Make sure the device name is the name of the whole SD card as described above, not just a

partition of it. For example: sdd, not sdds1 or sddp1, and mmcblk0, not mmcblk0p1.

dd bs=4M if=2017-02-16-raspbian-jessie.img of=/dev/sdX

•Please note that block size set to 4M will work most of the time. If not, please try 1M,

although this will take considerably longer.

•Also note that if you are not logged in as root you will need to prefix this with sudo.

COPYING A ZIPPED IMAGE TO THE SD CARD

In Linux it is possible to combine the unzip and SD copying process into one command, which
avoids any issues that might occur when the unzipped image is larger than 4GB. This can happen on

certain filesystems that do not support files larger than 4GB (e.g. FAT), although it should be noted
that most Linux installsations do not use FAT and therefore do not have this limitation.

The following command unzips the zip file (replace 2017-02-16-raspbian-jessie.zip with the
appropriate zip filename), and pipes the output directly to the dd command. This in turn copies it to
the SD card, as described in the previous section.

unzip -p 2017-02-16-raspbian-jessie.zip | sudo dd of=/dev/sdX
bs=4096

CHECKING THE IMAGE COPY PROGRESS

•By default, the dd command does not give any information about its progress and so may

appear to have frozen. It can take more than five minutes to finish writing to the card. If your
card reader has an LED, it may blink during the write process.

•To see the progress of the copy operation, you can run the dd command with the status

option.

dd bs=4M if=2017-03-02-raspbian-jessie.img of=/dev/sdd
status=progress

•If you are using an older version of dd, the status option may not be available. You may be

able to use the dcfldd command instead, which will give a progress report about how

much has been written.

CHECKING IF THE IMAGE WAS CORRECTLY WRITTEN TO THE SD CARD

•After dd has finished copying, you can check what has been written to the SD card by dd-

ing from the card back to another image on your hard disk; truncating the new image to the

same size as the original; and then running diff (or md5sum) on those two images.

•If the SD card is bigger than the original image size, dd will make a copy of the whole

card. We must therefore truncate the new image to the size of the original image. Make sure

you replace the input file if= argument with the correct device name. diff should report

that the files are identical.

dd bs=4M if=/dev/sdX of=from-sd-card.img

truncate --reference 2017-02-16-raspbian-jessie.img from-sd-
card.img

diff -s from-sd-card.img 2017-02-16-raspbian-jessie.img

•Run sync. This will ensure the write cache is flushed and that it is safe to unmount your

SD card.

•Remove the SD card from the card reader.

Setting up the Hokuyo Laser Scanner
Install Urgbenri on hostcomputer

https://sourceforge.net/projects/urgbenri/

Installing BreezyLIDAR
Breezy Lidar can be found at:

https://github.com/simondlevy/BreezyLidar

BreezyLidar - Simple, efficient, Lidar access for Linux computers in Python and C++

This repository contains everything you need to start working with the popular Hokuyo URG-
04LX Lidar unit on your Linux computer. It is designed for robotics applications on a single-board
Linux computer like RaspberryPi or ODROID.

BreezyLidar was inspired by the Breezy approach to Graphical User Interfaces developed by Ken
Lambert: an object-oriented Application Programming Interface that is simple enough for beginners
to use, but that is efficient enough to scale-up to real world problems. As shown in the following
code fragment, the API is extremely simple: a constructor that accepts the port (device) name on
which the unit is connected, and method for accessing the scans (range values):

 from breezylidar import URG04LX

 laser = URG04LX('dev/tty/ACM0')

 while True:

 scan = laser.getScan()

 # do something with scan, like SLAM

Installing for Python

The BreezyLidar installation uses the popular distutils approach to installing Python packages, so
all you should have to do is download the repositry, cd to the directory where you put it, and do

sudo python setup.py install

For a quick demo, you can then cd to examples and do

make test

http://docs.python.org/2/distutils/introduction.html
http://home.wlu.edu/~levys/software/breezyslam/
http://home.wlu.edu/~lambertk/
http://home.wlu.edu/~lambertk/
http://home.wlu.edu/~lambertk/#Software
http://www.robotshop.com/en/hokuyo-urg-04lx-ug01-scanning-laser-rangefinder.html
http://www.robotshop.com/en/hokuyo-urg-04lx-ug01-scanning-laser-rangefinder.html
https://github.com/simondlevy/BreezyLidar
https://sourceforge.net/projects/urgbenri/

TROUBLESHOOTING

Sometimes the laser scanner does not initiate properly if it is first called by BreezyLidar . This can
be remedied by initiating it with other software or by plugging it into the Lab computer and
initiating it in URGBenri standard and then unplugging the USB cable back into the Raspberry Pi
without removing the power cable.

Using BreezyLIDAR
Included with Breezy Lidar in the examples folder is urgtest.py. This program can be executed with
the bash command $python urgtest.py

Code Below:

from breezylidar import URG04LX

import sys

from time import time

DEVICE = '/dev/ttyACM0'

NITER = 100

laser = URG04LX(DEVICE)

print('===')

print(laser)

print('===')

start_sec = time()

count = 0

for i in range(1, NITER+1):

 sys.stdout.write('Iteration: %3d: ' % i)

 data = laser.getScan()

 if data:

 print('Got %3d data points' % len(data))

 count += 1

 else:

 print('=== SCAN FAILED ===')

elapsed_sec = time() - start_sec

print('%d scans in %f seconds = %f scans/sec' % (count, elapsed_sec, count/elapsed_sec))

This is a very basic example that loads data from the laser scanner into an array and returns the
length of that array.

Important things to note:

The Laser Scanner is accessible at /dev/ttyACM0

laser.getScan is used to retrieve data. It returns an array of int

Within the array, there are roughly 680 measured points. Values of less than 20 are undefined and
should be treated as infinitely far away, values greater than 20 are approximate distances in
millimeters.

To find which value in the array corresponds to which angle, viewing the laser scanner in Urgbenri
and mouseover the plot, or switch to the array view to find the point in the array associated with the
direction.

Setting Up GPIO
You will need the python GPIO module. It is installed by default in Rasbian.

Otherwise it can be found here: https://sourceforge.net/projects/raspberry-gpio-python/

To make sure that it is at the latest version:

$ sudo apt-get update
$ sudo apt-get install python-rpi.gpio python3-rpi.gpio
To install the latest development version from the project source code library:
$ sudo apt-get install python-dev python3-dev
$ sudo apt-get install mercurial
$ sudo apt-get install python-pip python3-pip
$ sudo apt-get remove python-rpi.gpio python3-rpi.gpio

https://sourceforge.net/projects/raspberry-gpio-python/

$ sudo pip install hg+http://hg.code.sf.net/p/raspberry-gpio-python/code#egg=RPi.GPIO
$ sudo pip-3.2 install hg+http://hg.code.sf.net/p/raspberry-gpio-python/code#egg=RPi.GPIO
To revert back to the default version in Raspbian:
$ sudo pip uninstall RPi.GPIO
$ sudo pip-3.2 uninstall RPi.GPIO
$ sudo apt-get install python-rpi.gpio python3-rpi.gpio

It can also be installed using pip

pip install RPi.GPIO

PWM Calibration
This is code that can be used to control the Talon Servo controllers

import RPi.GPIO as IO

from fcntl import ioctl

IO.setmode(IO.BOARD)

IO.setup(21, IO.OUT)

IO.setup(35, IO.OUT)

p = IO.PWM(21, 192.3)

d = IO.PWM(35, 192.3)

Scope Displaying a
192.3Hz Signal with a

duty cycle of 27

This configures IO on pins 21 and 35
and sets the wave speed to 192.3Hz
which was measured to be the correct
frequency for controlling the Talon
Motor controllers.

To properly connect the Servo
Controllers to the Raspberry Pi, the
black wire for one servo should be
connected to the lower right pin
when the raspberry pi logo is
oriented upwards, and the other
should be seven pins to the left (4 pin
space between the connectors)

In the diagram to the left the black
wires should be on pins 25 and 39 as

grounds. Pins 21 and 35 should be connected to the white wires for control.

Raspberry Pi with Talon Servo Controllers attached to pins 21 and 35

Joystick Code
js_linux.py is a sample program modified from https://gist.github.com/rdb/8864666

This Program printed joystick states to the screen, it has been modified to serve as a simple program
to drive the robot using a dual stick joystick and GPIO using tank controls. Running this program
with $python js_linux.py should allow you to remotely operate a properly configured robot with a
USB joystick connected to the Raspberry Pi. The Joystick is assumed to be at /dev/input/js0.

NOTE: If you are using the wireless Joystick, the robot will most likely lurch forward until the
joystick is synced. Do not run this code where this occurring would be dangerous or cause damage
to the robot or other lab equipment.

 Relevant code included below.

import os, struct, array

import RPi.GPIO as IO

from fcntl import ioctl

IO.setmode(IO.BOARD)

IO.setup(21, IO.OUT)

IO.setup(35, IO.OUT)

p = IO.PWM(21, 192.3)

d = IO.PWM(35, 192.3)

Iterate over the joystick devices.

print('Available devices:')

for fn in os.listdir('/dev/input'):

 if fn.startswith('js'):

 print(' /dev/input/%s' % (fn))

We'll store the states here.

axis_states = {}

button_states = {}

############Name Stuff is her in the source code

axis_map = []

button_map = []

Open the joystick device.

fn = '/dev/input/js0'

print('Opening %s...' % fn)

jsdev = open(fn, 'rb')

Get the device name.

https://gist.github.com/rdb/8864666

#buf = bytearray(63)

buf = array.array('c', ['\0'] * 64)

ioctl(jsdev, 0x80006a13 + (0x10000 * len(buf)), buf) # JSIOCGNAME(len)

js_name = buf.tostring()

print('Device name: %s' % js_name)

Get number of axes and buttons.

buf = array.array('B', [0])

ioctl(jsdev, 0x80016a11, buf) # JSIOCGAXES

num_axes = buf[0]

buf = array.array('B', [0])

ioctl(jsdev, 0x80016a12, buf) # JSIOCGBUTTONS

num_buttons = buf[0]

Get the axis map.

buf = array.array('B', [0] * 0x40)

ioctl(jsdev, 0x80406a32, buf) # JSIOCGAXMAP

for axis in buf[:num_axes]:

 axis_name = axis_names.get(axis, 'unknown(0x%02x)' % axis)

 axis_map.append(axis_name)

 axis_states[axis_name] = 0.0

Get the button map.

buf = array.array('H', [0] * 200)

ioctl(jsdev, 0x80406a34, buf) # JSIOCGBTNMAP

for btn in buf[:num_buttons]:

 btn_name = button_names.get(btn, 'unknown(0x%03x)' % btn)

 button_map.append(btn_name)

 button_states[btn_name] = 0

print '%d axes found: %s' % (num_axes, ', '.join(axis_map))

print '%d buttons found: %s' % (num_buttons, ', '.join(button_map))

Main event loop

while True:

 evbuf = jsdev.read(8)

 if evbuf:

 time, value, type, number = struct.unpack('IhBB', evbuf)

 if type & 0x02:

if (number == 1):

axis_states[axis] = value

fvalue = -value / 32767.0

d.start(fvalue*10 + 27)

print "%s: %.5f" % ("left", fvalue)

if (number == 3):

axis_states[axis] = value

fvalue = -value / 32767.0

p.start(-fvalue*10 + 27)

print "%s: %.5f" % ("right", fvalue)

The only code relevant to the operation of the robot are the GPIO inputs and initializers at the top
discussed earlier, and the main event loop, the rest is related to getting joystick data. This is a quick
and dirty experiment to make sure that the robot behaves correctly when given GPIO signals.

In the main eventloop, axis 1 is the left Y axis and axis 3 is the right Y axis. d.start(int) and
p.start(ist) are used to change the duty cycle of the left and right servos. 27 means that the cycle is
up 27% of the time. This is a neutral cycle. The servo will move very little or not at all if this cycle
is sent.

A cycle greater than 27 but less than ~50 will cause the Servo to move forward, less than 27 but
greater than ~0 will cause it to move back. Since the servos are oriented 180 degrees from each
other the right servo must be reversed.

INSTABILITY

Due to the difficulty of running real time code on top of a kernel, there is some instability
noticeable when the robot is not moving. The servo controllers will flash lights back and forth
between moving forward and backward, and occasionally the robot will jitter. These problems
become worse if the raspberry pi is taking input from mouse or keyboard.

These problems could be alleviated with the addition of a breakout board designed to output PWM
from hardware, used as an intermediary between the Raspberry Pi and the Servo Controllers.

Teleoperation of the Robot

Since the Raspberry Pi is running Linux, the easiest way to remotely access it is via ssh either from
another Linux machine, or via a windows machine using PuTTY. If the raspberry pi is intended to
interact with the cRio, it should be on the same subnet. Generally the best way to do this is to right
click on the network preferences in the upper right hand corner of the screen next to the processor
usage meter, select eth0, and set the network device to use a static IP. The Raspberry pi should be
10.13.5.12, and router should be 10.13.5.1

Default Location of Network Preferences, and compatible FIRST static IP settings

Accordingly, the computer you wish to access the Pi from should be connected to the NIPISSING
ROBOTICS network, and have that network device set to use a static IP of 10.13.5.X where X is a
number between 5 and 9.

Alternatively, both can be set to have dynamic IP addresses, but neither will be able to communicate
with the cRIO due to being on a different subnet.

Once both devices are properly configured, run the command $ssh 10.13.5.12 or connect to
10.13.5.12 in PuTTY. If you used Dynamic IP addresses, this will be different, use $ifconfig on the
Raspberry Pi to find the correct IP

If you successfully connect to the Raspberry Pi, you should receive a prompt for User name and
Password

Username: pi

Password: raspberry

You should now have a CLI for the Raspberry Pi and can now execute files, and execute scripts as
though you were using a terminal window on the Pi this eliminates the need for a wired connection
to the robot.

Programing Autonomous Behavior

urgtest2.py through urgtest5.py are variants on the original urgtest.py with different data displayed.
urgtest4.py and urgtest5.py have basic autonomous behavior included.

urgtest4.py is included below and has only basic instructions for turning away from obstacles.

from breezylidar import URG04LX

import sys

#import time

import os, struct, array

import RPi.GPIO as IO

from fcntl import ioctl

from time import time

IO.setmode(IO.BOARD)

IO.setup(21, IO.OUT)

IO.setup(35, IO.OUT)

le = IO.PWM(21, 192.3)

ri = IO.PWM(35, 192.3)

DEVICE = '/dev/ttyACM0'

laser = URG04LX(DEVICE)

print('===')

print(laser)

print('===')

start_sec = time()

while True:

 data = laser.getScan()

 turning = False

 for x in range (180, 500):

 if (data[x] >20) and (data [x] < 550):

 turning = True

 if (turning): #turn

ri.start(20)

 le.start(20)

 print "turning: %d"%(data[350])

 else: #drive forward

 ri.start(30)

 le.start(24)

 print "drive"

 # time.sleep(1)

else:

 print('=== SCAN FAILED ===')

elapsed_sec = time() - start_sec

Basic if statements are used to check for obstacles in front of the robot. 180,500 is a sweep in front
of the robot of nearly 180 degrees, and 550mm is the required clearance for the robot to pivot in
place. urgtest5.py is similar, with additional if statements to attempt recovery if caught on an
obstacle.

BreezySLAM
BreezySLAM can be found at: https://github.com/simondlevy/BreezySLAM

BreezySLAM can be installed alongside BreezyLIDAR to demonstrate a SLAM algorythm.
Unfortunately, this implementation is to intensive to run on a Raspberry Pi and thus must be done
with a USB-IP solution or remotely accessing /dev/ttyACM0 to access the Hokuyo laser scanner
from a more powerful system.

Alternatively, as a work around a laptop can simply be attached to the robot, and work in tandem
with the raspberry pi, handling slam, navigation and scanning, with the Pi handling servo control.

With some patience, the robot was able to generate some maps of the lab.

https://github.com/simondlevy/BreezySLAM

	Setting up the Hokuyo Laser Scanner
	Installing BreezyLIDAR
	Using BreezyLIDAR
	Setting Up GPIO
	PWM Calibration
	Joystick Code
	Teleoperation of the Robot
	Programing Autonomous Behavior
	BreezySLAM

