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ANA ANUŠIĆ, JERNEJ ČINČ

Abstract. In this paper we study a class of embeddings of tent inverse limit spaces.
We introduce techniques relying on the symbolic description of tent inverse limit spaces
and use them to study the sets of accessible points and prime ends of given embeddings.
We find phenomena which do not occur in the standard embeddings arising from the
Barge-Martin construction of global attractors. Standard embeddings are treated in
detail at the end of the paper.

1. Introduction

A problem of classifying continua that can be embedded in the plane is of substantial
interest in Continuum Theory, mainly because it is intrinsically related with the solution
of the Fixed Point Property for planar non-separating continua. In the case when a
continuum is chainable, i.e., it admits an ε-mapping on the interval [0, 1] for every
ε > 0, it follows from an old result of Bing [8] that the continuum can be embedded
in the plane. Two embeddings of a continuum are said to be equivalent if there exists
a planar homeomorphism mapping one onto the other. Therefore, it is natural to ask
how many possible non-equivalent embeddings of a specific chainable continuum there
exist and what these embeddings look like. The straightforward way to approach the
description of embeddings is through their sets of accessible points or through their
prime end structure.
Inverse limit spaces on intervals are chainable. In [2] Bruin and the authors showed
that there exist uncountably many non-equivalent embeddings of tent map inverse limit
spaces for all tent maps with slopes greater than

√
2, but they give no insight what the

constructed embeddings look like. In this paper we study the class of planar embeddings
from [2] in detail, focusing primarily on accessible sets and the prime end structure in
the finite critical orbit case.
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The study of sets of accessible points of planar embeddings of the Knaster continuum
was given by Mayer in [23], and the characterization of possible sets of accessible points
of embeddings of Knaster continua was given by Dȩbski & Tymchatyn in [18]. The
study of embeddings of unimodal inverse limit spaces appears in the literature in two
forms; corresponding to attractors of orientation preserving (by Brucks & Diamond in
[14]) and orientation reversing (by Bruin in [16]) planar homeomorphisms. We refer to
those embeddings as standard. Generally, Barge and Martin showed in [6] that every
inverse limit space with a single interval bonding map can be realized as an attractor
of an orientation preserving planar homeomorphism which acts on the attractor in the
same way as the natural shift homeomorphism acts on the inverse limit. Using the
construction from [6], Boyland, de Carvalho and Hall recently gave in [10] the complete
classification of the prime end structure and accessible sets of the Brucks-Diamond
embedding of unimodal inverse limit spaces (satisfying certain regularity conditions
valid for e.g. tent map inverse limits). For non-standard embeddings of tent inverse
limit spaces constructed in [2], the natural shift homeomorphism cannot be extended to
the plane as we show in Section 8. Thus, we lack dynamical techniques as used in [10].
Therefore, for the construction and study of embeddings we chose a symbolic approach
emerging from the Milnor-Thurston kneading theory in [25] which was already used
in constructions of embeddings by Brucks & Diamond [14], Bruin [16] and Bruin and
the authors [2]. It turns out that such construction gives straightforward calculation
techniques on the itineraries which we exploit throughout the paper.

By N we denote the set of natural numbers and let N0 := {0} ∪N. The Hilbert cube is
the space [0, 1]N0 equipped with the product metric

d(x, y) :=
∑
i≤0

2i|πi(x)− πi(y)|,

where πi : [0, 1]N0 → [0, 1] denote the coordinate projections for i ≤ 0.

The tent map family Ts : [0, 1] → [0, 1] is defined by Ts := min{sx, s(1 − x)} where
x ∈ [0, 1] and s ∈ (0, 2]. Let c = 1

2
denote the critical point of the map Ts. In the rest

of the file we work with tent maps for slopes s ∈ (
√

2, 2] and when there is no need to
specify the slope we set for brevity T := Ts. The inverse limit space with the bonding
map T is a subspace of the Hilbert cube defined by

X := lim←−([0, 1], T ) = {x ∈ [0, 1]N0 : T (πi(x)) = πi+1(x), i ≤ 0}.

The space X is a continuum, i.e., compact and connected metric space. Define the shift
homeomorphism as σ : X → X, πi(σ(x)) := T (πi(x)) for every i ≤ 0.

The space obtained by restricting the bonding map T to its dynamical core is called
the core of X and will be denoted by X ′:

X ′ := lim←−([T 2(c), T (c)], T |[T 2(c),T (c)]).

A continuum is indecomposable if it cannot be expressed as a union of two proper
subcontinua. When s ∈ (

√
2, 2], the core X ′ is indecomposable and by Bennett’s

theorem from [7], X = X ′∪C, where C is a ray which contains the fixed point (. . . , 0, 0)
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and it compactifies on X ′ (for details see e.g. [22]). The ray C shields off some points
of a continuum X and thus has an important effect on the set of accessible points in
embeddings of X. However, the interesting phenomena regarding the structure of sets
of accessible points occur in X ′ and thus we will mostly ignore C in the remainder
of the paper. The structure of embedded X (including C) will be briefly discussed in
Section 5.

A composant of a point x ∈ K is the union of all proper subcontinua in K that
contain x. If a continuum is indecomposable it consists of uncountably many pairwise
disjoint composants and every composant is dense in the continuum, see [26]. The
arc-component Ux of a point x ∈ K is the union of all arcs from K that contain point
x.

A point a ∈ K ⊂ R2 from a continuum K is accessible (i.e., from the complement of K)
if there exists an arc A ⊂ R2 such that A ∩K = {a}. We say that an arc-component
Ux is fully accessible, if every point from Ux is accessible. Mainly we will be interested
in embeddings of inverse limits of indecomposable cores of tent maps with finite critical
orbit. In these cases every arc-component of a point corresponds to the composant of
that point (see Proposition 3 from [13]).

We denote the class of embeddings of tent inverse limit spaces X and their cores X ′

constructed in [2] by E and refer to them as E-embeddings. In [2], every E-embedding of
X is represented as a union of uncountably many horizontal segments (called basic arcs)
which are aligned along vertically embedded Cantor set with prescribed identifications
between some endpoints of basic arcs (see Section 2 of this paper and [2] for details). An
E-embedding of X is then uniquely determined by the left infinite itinerary L = . . . l2l1,
which is a symbolic description of the largest basic arcs among all basic arcs.

In Section 2, we give a short symbolic preliminaries and recap the construction of embed-
dings of tent inverse limit spaces as given in [2]. We give a symbolic characterization of
arc-components in X, generalizing the result from the paper by Brucks& Diamond [14].
In Section 3, we characterize the possible sets of accessible points in an arc-component
of any indecomposable plane non-separating continuum K. In Section 4 we briefly
introduce Carathéodory’s prime end theory and prove that there are no fourth kind
prime ends associated to an indecomposable plane non-separating continuum whose
only proper subcontinua are arcs (which occurs e.g. for tent map inverse limits with
long-branched bonding maps). In Section 5, we begin our study of embeddings E . We
introduce the notion of cylinders of basic arcs and techniques to explicitly calculate their
extrema. We show that two E-embeddings of the same space X are equivalent when
they are determined by eventually the same left infinite tail L. Given an E-embedding
of X, we prove that the arc-component of the top basic arc with symbolic description L
(throughout the file this arc-component is denoted by UL) is fully accessible, if the top
basic arc is not a spiral point (see Definition 2.7 and Figure 1). However, we also show
that UL is not necessarily the unique (fully) accessible arc-component. In the same sec-
tion we briefly discuss E-embeddings of decomposable continuum X and characterize
the set of accessible points up to two points on the corresponding circle of prime ends.
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From Section 6 onwards we study E-embeddings of indecomposable continuum X ′. In
Section 6 we give sufficient conditions on itineraries of L and kneading sequences ν
associated with X ′ so that the embeddings of X ′ allow more than one fully accessible
arc-component and give some interesting examples of such embeddings.

We say that x ∈ X is a folding point if for every ε > 0 there exists a neighbourhood
Uε of x, which is not homeomorphic to the C × (0, 1), where C is the Cantor set. A
point x ∈ X is called an endpoint if for every two subcontinua X1, X2 ⊂ X such that
x ∈ X1 ∩ X2, either X1 ⊂ X2 or X2 ⊂ X1. Note that endpoints are also folding
points. In Section 7 we characterize accessible folding points of E-embeddings when
the critical orbit of the tent map is finite. Surprisingly, no endpoints will be accessible
in any E-embedding of X ′ with the exception of Brucks-Diamond embedding. Another
surprising phenomenon is the occurrence of Type 3 folding points (see Definition 7.19
and Figure 13) when the orbit of the third iterate of the critical point is periodic but the
critical point itself is not periodic. Such a phenomenon does not occur in the standard
(Brucks-Diamond or Bruin’s) embedding of any tent map inverse limit space.

In Section 8 we prove that for every embedding constructed in [2] except for the ones
constructed by Brucks & Diamond [14] and Bruin [16], natural shift homeomorphism
can not be extended from the E-embedding of X ′ to the whole plane. Showing that
we answer on a question posed by Boyland, de Carvalho and Hall in the paper [10] on
the page 4. In Section 9 we study special examples of embeddings of X ′. We explicitly
show that every X ′ can be embedded with at least two non-degenerate fully accessible
arc-components. In a finite orbit case when we have exactly two fully accessible arc-
component we show that there exists an embedding of X ′ with exactly two simple dense
canals.

We conclude the paper with the complete characterization of sets of accessible points
(and thus also the prime end structure of the corresponding circle of prime ends) of the
standard two embeddings: the Bruin’s embedding of X ′ (Section 10) and the Brucks-
Diamond embedding of X ′ (Section 11) using symbolic dynamics. In Section 10 we show
that for the Bruin’s embedding of X ′ there is exactly one fully accessible non-degenerate
arc-component and no other point from the embedding of X ′ is accessible. We show
that if X ′ is not the Knaster continuum, then Bruin’s embedding of X ′ has exactly one
simple dense canal. In Section 11 we explicitly calculate the extrema of cylinders and
neighbourhoods of folding points and obtain equivalent results as obtained recently by
Boyland, de Carvalho and Hall in [10]. Moreover, since the symbolic description makes
it possible to distinguish endpoints within the set of folding points, our results extend
the classification given in [10].

2. Preliminaries on symbolic dynamics

In [2] uncountably many non-equivalent planar embeddings of indecomposable X ′ were
constructed with the use of symbolic dynamics by making any given x ∈ X ′ accessible.
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We give a short overview of symbolic dynamics but we refer to [2] and [14] for the more
complete picture.

The kneading sequence of a map T is a right-infinite sequence ν = c1c2 . . . ∈ {0, 1}∞,
where

ci =

{
0, T i(c) ∈ [0, c],
1, T i(c) ∈ [c, 1],

for all i ∈ N. If cn = c for some n ∈ N, the critical point c is periodic and the ambiguity
in the definition of ν is resolved by defining ν to be the smaller of (c1 . . . cn−10)∞ and
(c1 . . . cn−11)∞ in the parity-lexicographical ordering on {0, 1}∞ defined below.

By #1(a1 . . . an) we denote the number of ones in a finite word a1 . . . an ∈ {0, 1}n; it can
be either even or odd. Choose t = t1t2 . . . ∈ {0, 1}∞ and s = s1s2 . . . ∈ {0, 1}∞ such
that s 6= t. Take the smallest k ∈ N such that sk 6= tk. Then the parity-lexicographical
ordering is defined as

s ≺ t⇔
{
sk < tk and #1(s1 . . . sk−1) is even, or
sk > tk and #1(s1 . . . sk−1) is odd.

Fix the kneading sequence ν = c1c2 . . .. The finite word a1 . . . an ∈ {0, 1}n is called
admissible if c2c3 . . . � ai . . . an � c1c2 . . . for every i ∈ {1, . . . , n}. Two-sided infi-
nite sequence . . . s−2s−1.s0s1 . . . ∈ {0, 1}Z is called admissible if every finite subword is
admissible. Analogously we define an admissible left- or right-infinite sequence. Addi-
tionally, two-sided sequences 0∞sksk+1 . . . will also be called admissible if sk = 1 and
every finite subword of the right-infinite sequence sksk+1 . . . is admissible. Denote the
set of all admissible two-sided infinite sequences by Σadm.

The set Σadm ⊂ Σ = {0, 1}Z inherits the topology of Σ given by the metric

d((si)i∈Z, (ti)i∈Z) :=
∑
i∈Z

|si − ti|
2|i|

.

Define the shift homeomorphism on symbolic sequences σΣ : Σ→ Σ as

σΣ(. . . s−2s−1.s0s1 . . .) := . . . s−1s0.s1s2 . . .

The continuum X is homeomorphic to the space Σadm/∼ (see Proposition 2 in [2]),
where ∼ is the equivalence relation on Σadm given by

s ∼ t⇔

 either si = ti for every i ∈ Z,
or if there exists k ∈ Z such that si = ti for all i 6= k but sk 6= tk
and sk+1sk+2 . . . = tk+1tk+2 . . . = ν.

Sequences of the form 0∞sksk+1 . . ., treated differently in the definitions above, corre-
spond to the points from C. By removing these sequences from the definition of Σadm,
we get a space homeomorphic to the core X ′. Shifts σ and σΣ are conjugated (see
Theorem 2.5 in [14]). Thus we will from here onwards abuse the notation and denote
both σ and σΣ by σ.
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A point x ∈ X is identified with a point in Σadm/∼ by the equivalence class of x̄ =
←−x .−→x = (xi)i∈Z according to the following rule:

xi =

{
0, πi(x) ∈ [0, c],
1, πi(x) ∈ [c, 1],

for i ≤ 0 and

xi =

{
0, T i(π0(x)) ∈ [0, c],
1, T i(π0(x)) ∈ [c, 1],

for i ∈ N. If the ambiguity in the definition of xi happens more than once, then c is
periodic and we study the itinerary of the modified kneading sequence instead. That
way for every x ∈ X there are at most two corresponding identified itineraries.

An arc is a homeomorphic image of an interval [0, 1] ⊂ R. A key fact for constructing
embeddings in [2] is that X can be represented as the union of basic arcs defined below.

From now on, when we speak about left infinite sequences we omit minuses in indices
and write ←−s = . . . s2s1 for the sake of brevity.

Definition 2.1. Let ←−s = . . . s2s1 ∈ {0, 1}∞ be an admissible left-infinite sequence.
The set

A(←−s ) := {x ∈ X;←−x =←−s } ⊂ X

is called a basic arc.

Remark 2.2. Let ←−s = . . . s2s1 ∈ {0, 1}∞ be an admissible left-infinite sequence. There
is a one-to-one correspondence between sequences ←−s and basic arcs A(←−s ). When it is
clear from the context that we refer to the basic arc A(←−s ) we abbreviate notation and
write only ←−s .

Note that π0 : A(←−s )→ [0, 1] is injective. In [16, Lemma 1] it was observed that A(←−s )
is either an arc or it is degenerate. For every basic arc we define two quantities as
follows:

τL(←−s ) := sup{n > 1 : sn−1 . . . s1 = c1c2 . . . cn−1,#1(c1 . . . cn−1) odd},
τR(←−s ) := sup{n ≥ 1 : sn−1 . . . s1 = c1c2 . . . cn−1,#1(c1 . . . cn−1) even}.

Lemma 2.3. [16, Lemma 2] Let ←−s ∈ {0, 1}∞ be an admissible left-infinite sequence
such that τL(←−s ), τR(←−s ) <∞. Then

π0(A(←−s )) = [T τL(←−s )(c), T τR(←−s )(c)].

If
←−
t ∈ {0, 1}∞ is another admissible left-infinite sequence such that si = ti for all i > 0

except for i = τR(←−s ) = τR(
←−
t ) (or i = τL(←−s ) = τL(

←−
t )), then A(←−s ) and A(

←−
t ) have a

common boundary point.

Let ω(c) denote the set of all accumulation points of the forward orbit of the critical
point c by the map T .

Proposition 2.4. [28, Theorem 2.2] A point x ∈ X is a folding point if and only if
πn(x) ∈ ω(c) for every n ∈ N.
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We have the following symbolic characterization of endpoints in X.

Proposition 2.5. [16, Proposition 2] A point x ∈ X such that πi(x) 6= c for every i < 0
is an endpoint of X if and only if τL(←−x ) = ∞ and x0 = infπ0(A(←−x )) or τR(←−x ) = ∞
and x0 = supπ0(A(←−x )).

If πi(x) = c for some i < 0, then x is an endpoint of X ′ if and only if σi(x) is an
endpoint. We can apply Proposition 2.5 to σi(x) in this case.

Fix admissible left-infinite sequence L = . . . l2l1 ∈ {0, 1}∞. Space Σadm/∼ is embedded
in the plane with respect to any chosen L as a subset of [0, 1] × C, where C ⊂ [0, 1]
denotes the Cantor set

C := [0, 1] \
∞⋃
m=1

3m−1−1⋃
k=0

(
3k + 1

3m
,
3k + 2

3m
).

Every basic arc A(←−s ) is embedded as the horizontal arc π0(A(←−s ))× {ψL(←−s )}, where

ψL(←−s ) :=
∞∑
i=1

(−1)#1(li...l1)−#1(si...s1)3−i +
1

2
,

This implies a linear order on the left-infinite sequences (=basic arcs) in which L is the
largest. The precise definition is given by:

Definition 2.6. Let ←−s ,←−t ∈ {0, 1}∞ and let k ∈ N be the smallest natural number
such that sk 6= tk. Then

(1) ←−s ≺L
←−
t ⇔

{
tk = lk and #1(sk−1 . . . s1)−#1(lk−1 . . . l1) even, or

sk = lk and #1(sk−1 . . . s1)−#1(lk−1 . . . l1) odd.

If two basic arcs have a common boundary point, the embedded arcs are joined with a

semi-circle on the left (right) if τL(←−s ) = τL(
←−
t ) (τR(←−s ) = τR(

←−
t )), see Lemma 2.3.

Throughout the paper, L will denote the left-infinite sequence of the largest basic arcs
which determines the planar embedding ϕL of X by the rules in the equation (1). Let us
fix the inverse limit space X. Denote by E the family of all embeddings of X constructed
in [2], i.e., with respect to all admissible tails L and refer to them as E-embeddings.
From now onwards we think of X as a planar continuum obtained by an E-embedding
of Σadm/∼ described above.

We want to describe the sets of accessible points of embedded X, focusing primarily
on the fully accessible arc-components. Since the approach in this study is mostly
symbolic, we need to obtain a symbolic description of an arc-component in X. Recall
that Ux denotes the arc-component of x ∈ X.

Definition 2.7. We say that a point x ∈ X is a spiral point if there exists a ray R ⊂ X
such that x is an endpoint of R and [x, y] ⊂ R contains infinitely many basic arcs for
every x 6= y ∈ R.
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x

Figure 1. Point x ∈ X is a spiral point.

Proposition 2.8. If x ∈ X is a spiral point, then A(←−x ) is degenerate and x is an
endpoint of X.

Proof. Assume that A(←−x ) is not degenerate. Note that x is not in the interior of A(←−x )
since then R ∪ A(←−x ) is a triod. Assume wlog that x is the right endpoint of A(←−x ). If
τR(A(←−x )) <∞, then by Lemma 2.3 there exists y ∈ X such that A(←−y ) and A(←−x ) are
connected by a semi-circle. If A(←−y ) is non-degenerate, then X again contains a triod.
If A(←−y ) is degenerate, then y = x is an endpoint of X, which is not possible since x is
contained in the interior of an arc A(←−x ) ∪R. Therefore, A(←−x ) is degenerate.
Since A(←−x ) is degenerate it follows from Lemma 2.3 that τL(←−x ) =∞ or τR(←−x ) =∞.
Thus, since x0 = infπ0(A(←−x )) = supπ0(A(←−x )), it follows by Proposition 2.5 that point
x is an endpoint of X. �

The following corollary follows directly from Proposition 2.8 since a spiral point cannot
be contained in the interior of an arc.

Corollary 2.9. Non-degenerate arc-components in X are:

• lines (i.e., continuous images of R) with no spiral points,
• rays (continuous images of R+), where only the endpoint can be a spiral point,
• arcs, where only endpoints can be spiral points.

Remark 2.10. Let y 6= z ∈ X. By Lemma 2.3, A(←−y ) and A(←−z ) are connected by
finitely many basic arcs if and only if there exists k ∈ N such that . . . yk+1yk = . . . zk+1zk.
We say that y and z have the same tail. Thus every arc-component is determined by its
tail with the exception of (one or two) spiral points with different tails. This generalizes
the symbolic representation of arc-components for finite critical orbit c given in [14] on
arbitrary tent inverse limit space X.

3. General results about accessibility

Definition 3.1. We say that a continuum K ⊂ R2 does not separate the plane if R2\K
is connected.

For K ⊂ R2 we denote by Cl(K) the closure of K in R2. The following proposition is
a special case of Theorem 3.1. in [11].
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Proposition 3.2. Let K ⊂ R2 be a non-degenerate indecomposable continuum which
does not separate the plane and let A = [x, y] ⊂ K be an arc. If x and y are accessible,
then A is fully accessible.

Proof. Assume by contradiction that arc A is not fully accessible. Because x, y ∈ K are
both accessible there exists a point z ∈ R2 \K and arcs Ax := [x, z], Ay := [y, z] ⊂ R2

such that (x, z], (y, z] ⊂ R2 \K.

Note that A∪Ax ∪Ay =: S is a simple closed curve in R2, see Figure 2. Thus R2 \S =
S1 ∪ S2 where S1 and S2 are (open) sets in R2 such that ∂S1 = ∂S2 = S. Specifically
S1 contains no accumulation points of S2 and vice versa. Denote by K1 := K ∩Cl(S1),
K2 := K ∩Cl(S2). Note that K1, K2 are subcontinua of K and K1, K2 6= ∅. Because A
is not fully accessible it follows that K1, K2 6= K. Furthermore K1 ∪K2 = K, which is
a contradiction with K being indecomposable. �

tx tyA

t
z

c
c
c
c

c
cc

Ax

#
#

#
#

#
##

Ay
S1

S2

Figure 2. Simple closed curve from the proof of Theorem 3.2.

Corollary 3.3. Let K be an indecomposable planar continuum which does not separate
the plane and let U be an arc-component of K. There are four possibilities regarding
the accessibility of U :

• U is fully accessible.
• There exists an accessible point u ∈ U such that one component of U \ {u} is

not accessible, and the other one is fully accessible.
• There exist two (not necessarily different) accessible points u, v ∈ U such that
U \ [u, v] is not accessible and [u, v] ⊂ U is fully accessible.
• U is not accessible.

Proof. By Proposition 3.2, the set of accessible points in U is connected. To see it is
closed, take a sequence (xi)i∈N of accessible points in U such that limi→∞ xi =: x ∈ U .
Let z ∈ R2 \ K and let Ai ⊂ R2 be arcs with endpoints xi and z and such that
Ai ∩K = xi for every i ∈ N. Denote by Si the bounded open set in R2 with boundary
A1 ∪ Ai ∪ [x1, xi], where [x1, xi] ⊂ U . Note that K ∩ Si = ∅ for every i ∈ N, since
otherwise K is decomposable by arguments similar as in the proof of Proposition 3.2.
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Then also K ∩ (∪i∈NSi) = ∅. Since x is contained in the boundary of ∪i∈NSi, which is
arc-connected, we conclude that x can be accessed with a ray from ∪i∈NSi ⊂ R2\K. �

Remark 3.4. Note that it follows from the third item of Corollary 3.3 that there can
exists an endpoint u = v ∈ U which is accessible and every x ∈ U \{u} is not accessible.
For instance such embeddings are described in [29] for Knaster continuum where the
endpoint is the only accessible point in the arc-component C. In the course of the paper
we show that all cases from Corollary 3.3 indeed occur in some embeddings of tent
inverse limit spaces.

4. Basic notions from the prime end theory

In this section we briefly recall the Carathéodory’s prime end theory. Although the
focus of this paper is not on the characterization of prime ends, we will include the
study of prime ends of some interesting examples and in general study of standard
planar embeddings at the end of the paper.

Definition 4.1. Let K ⊂ R2 be a plane non-separating continuum. A crosscut of
R2 \ K is an arc Q ⊂ R2 which intersects K only in its endpoints. Note that K ∪ Q
separates the plane into two components, one bounded and the other unbounded. Denote
the bounded component by BQ. A sequence {Qi} of crosscuts is called a chain, if the
crosscuts are pairwise disjoint, diamQi → 0 and BQi+1

⊂ BQi for every i ∈ N. We
say that two chains {Qi} and {Ri} are equivalent if for every i ∈ N there exists j ∈ N
such that BRj ⊂ BQi and for every j ∈ N there exists i′ ∈ N such that BQi′

⊂ BRj . An
equivalence class [{Qi}] is called a prime end. A basis for the natural topology on the
set of all prime ends consists of sets {[{Ri}] : BRi ⊂ BQ for all i} for all crosscuts Q.
The set of prime ends equipped with the natural topology is a topological circle, called
the circle of prime ends, see e.g. Section 2 in [11].

Definition 4.2. Let P = [{Ri}] be a prime end. The principal set of P is Π(P ) =
{limQi : {Qi} ∈ P is convergent} and the impression of P is I(P ) = ∩iCl(BRi). Note
that both Π(P ) and I(P ) are subcontinua in X ′ and Π(P ) ⊆ I(P ). We say that P is
of the

(1) first kind if Π(P ) = I(P ) is a point.
(2) second kind if Π(P ) is a point and I(P ) is non-degenerate.
(3) third kind if Π(P ) = I(P ) is non-degenerate.
(4) fourth kind if Π(P ) ( I(P ) are non-degenerate.

Theorem 4.3 (Iliadis [21]). Let K be a plane non-separating indecomposable contin-
uum. The circle of prime ends corresponding to K can be decomposed into open inter-
vals and their boundary points such that every open interval U uniquely corresponds to
a composant of K which is accessible in more than one point and I(e) ( K for every
e ∈ U . For the boundary points e it holds that I(e) = K.

Proposition 4.4. Let K be a plane non-separating continuum such that every proper
subcontinuum of K is an arc and such that every composant contains at most one folding
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point. Then Π(P ) is degenerate or equal to K for every prime end P . Specially, there
exist no prime ends of the fourth kind.

Proof. Assume there exists a prime end P such that Π(P ) is non-degenerate and not
equal to K. Then Π(P ) = [a, b] is an arc in K. We claim that both a and b are folding
points. Assume that there exists ε > 0 such that B(a, ε) ∩ K = C × I, where C is
the Cantor set and B(a, ε) denotes the open planar ball of radius ε around the point a.
Since a ∈ Π(P ), there exist a chain of crosscuts {Qi} ∈ P such that Qi → a as i→∞.
Note that Qi ∈ B(a, ε) for large enough i, so the endpoints of Qi are contained in C× I
and the interior of Qi does not intersect K. Therefore, it is possible to translate every
Qi along I and find a point x 6∈ [a, b] for which there exists a chain of crosscuts {Ri}
equivalent to {Qi} such that Ri → x as i → ∞, see Figure 3. This contradicts the
assumption, i.e., point a is a folding point. The proof for the point b is analogous.
We conclude that there exists a composant with at least two folding points, which is a
contradiction. �

a bx

Qi

Qi+1

Ri

Ri+1

Figure 3. Translating the chain of crosscuts along I in Proposition 4.4.

Definition 4.5. Let K be a plane non-separating continuum. A prime end P such that
Π(P ) is non-degenerate but different than K is called an infinite canal. A third kind
prime end P such that Π(P ) = I(P ) = K is called a simple dense canal.

We obtain the following corollary, which we use later in the paper for discussing the
prime end structure of E-embeddings of X when the critical orbit is finite.

Corollary 4.6. Let K be an indecomposable plane non-separating continuum such that
its every subcontinuum is an arc and every composant contains at most one folding
point. Then the circle of prime ends corresponding to K can be partitioned into open
intervals and their endpoints. Open intervals correspond to accessible open arcs in K.
The endpoints of open intervals are the second or the third kind prime ends for which
the impression is K. The second kind prime end corresponds to an accessible folding
point in K and the third kind prime end corresponds to a simple dense canal in K.

Question. If X ′ is a core of a tent map inverse limit, is there a planar embedding
ϕ : X ′ → R2 such that ϕ(X ′) has fourth kind prime end?

5. An Introduction to the study of accessible points of E-embeddings

By Corollary 3.3, if x ∈ Ux ⊂ X is accessible it does not a priori follow that every point
from Ux is accessible, see e.g. Figure 4. Recall that X = C ∪X ′. In this paper we study
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the accessible sets of embeddings of either X or X ′ and the two cases substantially
differ as we will see in this section. In the rest of the paper we are concerned only with
embeddings of the cores X ′.

x

y

Figure 4. Point x is accessible from the complement while point y which
has neighbourhood of Cantor set of arcs is not.

We will denote the smallest admissible left-infinite tail in X ′ with respect to ≺L by S.
The arc-component of points from L (S) will be denoted from now onwards by UL (US).
The following examples show that UL and US do not necessarily coincide. Later in this
section we will especially be concerned with the accessibility of UL and US.

Example 1. Assume that the kneading sequence is given by ν = (101)∞. Embed X ′

in the plane according to the ordering in which L = . . . (01)(01)(01) is the largest. Note
that the smallest sequence is then S = . . . (10)(10)(10) 6⊂ UL.

Example 2. Take the kneading sequence ν = 1001(101)∞. Embed X ′ in the plane ac-
cording to the ordering in which L = . . . (001)(001101)(001)(001101) is the largest. The
smallest is then S = . . . (100)(101100)(100)(101100) 6⊂ UL. Note that in comparison
with the previous example this time S 6= σk(L) for every k ∈ N.

Definition 5.1. Let ν be a kneading sequence. For any admissible finite word an . . . a1 ∈
{0, 1}n define the cylinder [an . . . a1] as

[an . . . a1] := {←−s = . . . sn+2sn+1an . . . a1 :←−s is an admissible left infinite sequence}.
Lemma 5.2. If an . . . a1 is admissible, then [an . . . a1] is not an empty set.

Proof. Say that 1an . . . a1 is not admissible. In that case 1an . . . a1 � c1 . . . cn+1, so
an . . . a1 ≺ c2 . . . cn+1, which is a contradiction with an . . . a1 being admissible. Note
that the left infinite tail 1∞an . . . a1 is admissible, which concludes this proof. �

Definition 5.3. Assume X is embedded in the plane with respect to L = . . . l2l1 and take
an admissible finite word an . . . a1. The top of the cylinder [an . . . a1] is the left infinite
tail denoted by Lan...a1 ∈ [an . . . a1] such that Lan...a1 �L ←−s , for all ←−s ∈ [an . . . a1].
Analogously we define the bottom of the cylinder [an . . . a1], denoted by San...a1, as the
smallest left infinite sequence in [an . . . a1] with respect to the order ≺L.

Remark 5.4. Note that each cylinder is a compact set (as a subset of the plane). Thus
for admissible finite words an . . . a1 there always exist Lan...a1 and San...a1 (they can be
equal).

Lemma 5.5. Assume X is embedded in the plane with respect to L. For every admis-
sible finite word an . . . a1 the arcs A(Lan...a1) and A(San...a1) are fully accessible.
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Proof. Take a point x ∈ A(Lan...a1) and denote by px = ψ(Lan...a1) the point in the
Cantor set C corresponding to the y-coordinate of x. Then the arc

A =

{(
π0(x), px +

t

2 · 3n+1

)
, t ∈ [0, 1]

}
has the property that A ∩ X = {x}, see Figure 5. When x ∈ A(San...a1), we can
analogously construct the arc A′ such that A′ ∩ X = {x} and conclude that x is
accessible. �

A
x

Figure 5. Point at the top of the cylinder [an . . . a1] is accessible by an
arc A.

From Lemma 5.5 it follows specially that A(L) and A(S) in Example 1 and Example 2
are fully accessible as they are the largest and the smallest arcs respectively among all
the arcs in embedding of X ′ determined by L.
The following proposition is the first step in determining the set of accessible points of
E-embeddings.

Proposition 5.6. Take L = . . . l2l1 and construct the embedding of X with respect to
L. Then every point in X with the same symbolic tail as L is accessible. If A(L) is not
a spiral point, then UL is fully accessible.

Proof. Take a point x ∈ X, where ←−x = . . . x2x1 and there exists n > 0 such that
. . . xn+2xn+1 = . . . ln+2ln+1. If #1(xn . . . x1) and #1(ln . . . l1) have the same parity, then
. . . ln+2ln+1xn . . . x1 = Lxn...x1 and it is equal to the Sxn...x1 otherwise. Lemma 5.5,
Corollary 3.3 and Remark 2.10 conclude the proof. �

Definition 5.7. Let ϕ, ψ : K → R2 be two embeddings of a continuum K in the plane.
We say that the embeddings are equivalent if the homeomorphism ψ ◦ ϕ−1 : ϕ(K) →
ψ(K) can be extended to a homeomorphism of the plane.

By ϕL we denote the E-embedding of X so that the arc A(L) is the largest among all
basic arcs. In the following proposition we observe that given L1, L2 with eventually
the same tail, we get equivalent embeddings.

Proposition 5.8. Let L1 = . . . l12l
1
1 and L2 = . . . l22l

2
1 be such that there exists n ∈ N so

that for every k > n it holds that l1k = l2k. Then the embeddings ϕL1 and ϕL2 of X are
equivalent.
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Proof. If #1(l1n . . . l
1
1) and #1(l2n . . . l

2
1) are of the same (different) parity, then for every

admissible ←−x = . . . x2x1 and ←−y = . . . y2y1 such that xn . . . x1 = yn . . . y1 it follows that
←−x ≺L1

←−y if and only if ←−x ≺L2
←−y (←−x �L2

←−y ).
We conclude that ϕL2◦ϕ−1

L1 : ϕL1(X)→ ϕL2(X) preserves (reverses) the order in every n-
cylinder [an . . . a1]. There exists a planar homeomorphism h so that h|ϕL1 (X) = ϕL2(X)

and h permutes n-cylinders from the order determined by L1 to the order determined
by L2, which concludes the proof. �

Now we briefly comment on E-embeddings of X (including C). For the rest of the section
assume that X is not the Knaster continuum (since then X = X ′, i.e., C is contained in
the core X ′). Let X be embedded in the plane with respect to L = . . . l2l1 6= 0∞ln . . . l1
for every n ∈ N. The case when E-embedding is equivalent to L = 0∞ (the Brucks-
Diamond embedding from [14]) will be studied in Section 11.

Remark 5.9. When the arc-component C is included, there exist cylinders [an . . . a1]
where an . . . a1 is not an admissible word, but there is k ∈ {1, . . . , n − 1} such that
ak . . . a1 is admissible, ak = 1 and an . . . ak+1 = 0n−k. In that case, [an . . . a1] contains
only one basic arc, that is [an . . . a1] = {0∞an . . . a1} and Lan...a1 = San...a1 = 0∞an . . . a1.

Remark 5.10. The arc-component C is isolated (when X is not the Knaster contin-
uum), and thus it is fully accessible in any E-embedding of X.

Proposition 5.11. Take an admissible left-infinite sequence ←−a = . . . a2a1 such that
A(←−a ) 6⊂ C and an 6= ln for infinitely many n ∈ N. Then there exist sequences (←−si )i∈N
and (

←−
ti )i∈N such that A(←−si ), A(

←−
ti ) ⊂ C, ←−si ,

←−
ti →←−a as i→∞ and ←−si ≺L ←−a ≺L

←−
ti .

Proof. First note that the assumption A(←−a ) 6⊂ C is indeed needed since by Remark 5.10,
C is isolated and thus the statement of the proposition does not hold for basic arcs from
C; thus assume A(←−a ) 6⊂ C.
Let (Ni)i∈N be the sequence of natural numbers such that an 6= ln for n ∈ {Ni : i ∈ N}.
Since an 6= ln for infinitely many n ∈ N such sequence (Ni)i∈N indeed exists. Denote by

←−
ti := 0∞a∗N2i−1

aN2i−1−1 . . . a1

←−si := 0∞a∗N2i
aN2i−1 . . . a1

for every i ∈ N. By contradiction, if a sequence
←−
ti is not admissible it holds that

1aN2i−1−1 . . . a1 �L ν. Thus, aN2i−1−1 . . . a1 ≺ −→c2 which is a contradiction with aN2i−1−1

. . . a1 being an admissible word. Thus
←−
ti is admissible sequence and proof goes analo-

gously for ←−si . Note that A(
←−
ti ), A(←−si ) ⊂ C for every i ∈ N.

Since #1(aN2i−1−1 . . . a1) and #1(lN2i−1−1 . . . l1) are of the same parity (the sequences
differ on even number of entries) and #1(aN2i−1 . . . a1) and #1(lN2i−1 . . . l1) are of differ-

ent parity (the sequences differ on odd number of entries), it holds that←−si ≺L ←−a ≺L
←−
ti

for every i ∈ N. �
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Combining Proposition 5.6 with Proposition 5.11 we obtain that only basic arcs from
UL or C can be tops or bottoms of cylinders of E-embeddings of X. Thus we obtain the
following corollary.

Corollary 5.12. If A(L) is not a spiral point, then ϕL(X) has exactly two fully acces-
sible arc-components, namely UL and C (for s = 2, since Xs = X ′s it is possible that
C = UL). If A(L) is non-degenerate, there are two remaining points on the circle of
prime ends and they correspond either to an infinite canal in X or to a folding point.
If A(L) is degenerate then there are no infinite canals in X.

The following statements are going to be used often throughout the paper to determine
that an arc-component is fully accessible.

Definition 5.13. Let ←−s = . . . s2s1 be an admissible left-infinite sequence. If τR(←−s ) <

∞, the tail
←−−
r(s) = . . . sτR(←−s )+1s

∗
τR(←−s )

sτR(←−s )−1 . . . s1 will be called the right neighbour of

←−s and if τL(←−s ) < ∞, the tail
←−
l(s) = . . . sτL(←−s )+1s

∗
τL(←−s )

sτL(←−s )−1 . . . s1 will be called the

left neighbour of ←−s .

Proposition 5.14. Embed X ′ in the plane with respect to L. Assume ←−s is at the

bottom (top) of some cylinder. If
←−−
r(s) is not the top (bottom) of any cylinder, then

A(
←−−
r(s)) contains an accessible folding point, see Figure 6. Analogous statement holds

for
←−
l(s).

Proof. If
←−−
r(s) is not the top of any cylinder, then there exist left-infinite admissible

sequences ←−xi �L
←−−
r(s) such that ←−xi →

←−−
r(s) as i → ∞. If τR(←−xi ) = ∞ for infinitely

many i ∈ N, we have found a folding point in A(
←−−
r(s)). So assume without the loss of

generality that τR(←−xi ) < ∞ for all i ∈ N. If ←−s �L
←−−
r(xi) for infinitely many i ∈ N we

get a contradiction with ←−s being the top of some cylinder. But then
←−−
r(xi) ≺L

←−−
r(s) for

all but finitely many i ∈ N which gives a folding point in A(
←−−
r(s)) again. �

p
←−−
r(s)

←−s

Figure 6. Setup of Proposition 5.14.

The following corollary follows directly from Proposition 5.14.

Corollary 5.15. Let U ⊂ X ′ be an arc-component which contains no folding points
and let X ′ be E-embedded. If there exists a basic arc A ⊂ U that is fully accessible, then
U is fully accessible.
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Remark 5.16. When we embed only the core X ′, there can exist accessible points in
X ′ \UL, see e.g. Example 1 and Example 2. In these two examples US 6= UL and points
from A(S) are accessible. It can happen that US is fully accessible (see Lemma 9.1
from Section 9), but that is not always the case. In Section 7.2 we explicitly construct
examples in which the arc-component US is only partially accessible.

From Lemma 5.5 it follows that the points at top or bottom of cylinders are accessible.
If a point which is not at the top or bottom of any cylinder has a neighbourhood home-
omorphic to the Cantor set of arcs, we can conclude that is not accessible. However,
the accessibility of folding points needs to be studied separately, since it is not straight-
forward to determine if they are accessible or not in a given embedding, see for example
Figure 7. Thus we need to do a detailed study on conditions for a folding point to be
accessible. For instance, in embeddings of the Knaster continuum in [29] the endpoint
is always accessible.

Remark 5.17. When the orbit of c is finite, with (pre)period n ∈ N, there exist exactly
n folding points (see [15]). They are contained in different arc-components which are
permuted by the shift homeomorphism. If the orbit of c is periodic, the folding points
are endpoints (see [5]).

(a) (b)

(c)

Figure 7. Neighbourhoods of folding points. In Case (a) and (c) folding
point is accessible, while in Case (b) it is not.

6. Tops/bottoms of finite cylinders

In this section we study the symbolics of tops/bottoms of cylinders depending on an
E-embedding of X ′ and we restrict to cases where L 6= 0∞ln . . . l1 for all n ∈ N.

For t ∈ {0, 1}, we denote by t∗ = 1 − t. For A = a1 . . . an denote by ∗A = a∗1a2 . . . an,
A∗ = a1 . . . an−1a

∗
n and ∗A∗ = a∗1a2 . . . an−1a

∗
n.

Definition 6.1. Let ν be a kneading sequence. We say that a finite word a1 . . . an ∈
{0, 1}n is irreducibly non-admissible if it is not admissible and a2 . . . an is admissible.
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Definition 6.2. Fix a kneading sequence ν. We say that a finite cylinder B = [bn . . . b1]
of length n ∈ N alters L = . . . l2l1, if there exist words (Ai)i∈N such that . . . A3A2A1 =
. . . ln+2ln+1 and the words A1B and A∗i

∗A∗i−1 . . .
∗A∗2

∗A1B are irreducibly non-admissible
for every i ≥ 2.

Proposition 6.3. If a finite cylinder B alters the admissible sequence L then LB 6⊂ UL
or SB 6⊂ UL.

Proof. Assume B alters L with words Ai as in the definition. If #1(B) − #1(ln . . . l1)
is even, then LB = . . . ∗A∗i

∗A∗i−1 . . .
∗A∗2

∗A1B 6⊂ UL, since LB differs from L on infinitely
many places. If #1(B) − #1(ln . . . l1) is odd, then SB = . . . ∗A∗i

∗A∗i−1 . . .
∗A∗2

∗A1B 6⊂
UL. �

The following example shows that there exist E-embeddings of X ′ such that none of
the extrema of certain cylinders are contained in UL.

Example 3. Let ν = (100111011)∞ and L = (001)∞11. Note that S10 = (100)∞(101)10
⊂ UL10 and L10 = (100)∞10 ⊂ UL10 . Therefore, L10, S10 6⊂ UL.

In Example 3 both extrema belong to the same arc-component. This is not necessarily
always the case, see e.g. Example 4 below.

Proposition 6.4. If B is such that LB 6⊂ UL or SB 6⊂ UL, then there exists a finite
word B′ such that B′ alters L.

Proof. Assume #1(B) − #1(ln . . . l1) is even and LB 6⊂ UL. Then obviously B′ = B
alters L. Similarly, if #1(B) − #1(ln . . . l1) is odd and SB 6⊂ UL. So assume #1(B) −
#1(ln . . . l1) is even and SB 6⊂ UL. Then l∗n+1B alters L, if l∗n+1B is admissible. If l∗n+1B
is not admissible, there exists i ∈ N such that l∗n+i . . . lnB is admissible, since otherwise
SB = LB, which is a contradiction. Analogously, if #1(B) − #1(ln . . . l1) is odd and
LB 6⊂ UL. �

Example 4. Let ν = 1001(101)∞ and L = . . . (001)(001101)(001)(001101). Then
S = S0 = . . . (100)(101100)(100)(101100) 6⊂ UL. So B = 0 alters L and words Ai are
divided by brackets.

Next we show there exist E-embeddings with more than two accessible arc-components.

Proposition 6.5. Assume that ν starts with some finite words ν = 1B . . . = 1ABA . . .,
where B∗ and ABA∗ are irreducibly non-admissible. The embedding of X ′ with respect
to L = . . . ABABABA contains at least three tails which are extrema of cylinders.

Proof. Note that S = . . .∗ABA∗∗B∗∗ABA∗∗B∗∗ABA∗. Take any admissible word C such
that |C| = |A| and such that #1(C)−#1(A) is even. Then SC = . . . A∗∗B∗∗ABA∗∗B∗C 6⊂
UL∪US and therefore we found three different tails which are extrema of cylinders. �

The following example shows that it is indeed possible to satisfy the conditions of
Proposition 6.5.
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Example 5. Take ν = 1001100100111 . . ., B = 001, A = 0011 and L = . . . ABABA.
which is easily checked to be admissible. For C take e.g. C = 1111. Note that SA∗ =
. . . . . .∗ABA∗∗B∗∗ABA∗∗B∗∗ABA∗ and SC = . . . A∗∗B∗∗ABA∗∗B∗C and thus we obtain three
accessible basic arcs with different tails. If we take e.g. ν = (10011001001111)∞, since
the only folding points are endpoints, by Lemma 5.14 it follows that there are three
fully accessible non-degenerate dense arc-components. Moreover, none of those arc-
components contains an endpoint so they are all lines. We will return to this particular
example later in Example 9.

7. Accessible folding points

In this section we study accessibility of folding points which are not at the top or the
bottom of any cylinder.

7.1. Accessible endpoints. Let us fix X ′ and the E-embedding depending on L. Re-
call that we denote by UL the arc-component of x ∈ A(L) ⊂ X ′. By Proposition 5.6,
every point with the same symbolic tail as L is accessible.

The following remark is a direct consequence of Proposition 2.5.

Remark 7.1. If e ∈ X ′ is an endpoint, then there exists a strictly increasing sequence
(mi)i∈N such that ē = . . . emi+1c1 . . . cmi .cmi+1 . . . = . . . emi+1ν for every i ∈ N.

In this section we work with the concept of an endpoint being capped which is defined
below. See Figure 8.

Definition 7.2. Let e ∈ X ′ be an endpoint with τL(←−e ) =∞ (τR(←−e ) =∞). We say that
a point e is capped from the left (right), if there exist sequences of admissible itineraries
(←−y i)i∈N, (

←−z i)i∈N ⊂ {0, 1}∞ such that ←−y i,←−z i → ←−e as i → ∞, ←−y i ≺L ←−e ≺L ←−z i for
every i ∈ N and arcs A(←−y i) and A(←−z i) are joined on the left (right).

e

Figure 8. Endpoint e is capped from the left.

Remark 7.3. If e ∈ X ′ is a right (left) endpoint which is not capped from the right
(left), then e is accessible by a horizontal arc in the plane. Note that if ←−e lies on an
extremum of a cylinder (which holds if e.g. e has the same symbolic tail as L), then e
is not capped.

Remark 7.4. Let ν = 10∞, i.e., X = X ′ is a Knaster continuum and let L be arbitrary.
Note that any two points x, y ∈ X ′ that are ε > 0 close to the point 0̄ and are identified
have the form xkxk−1 . . . x1 = ykyk−1 . . . y1 = 10k−1 for some k ∈ N. It follows that
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either ←−x ,←−y ≺L
←−
0 or ←−x ,←−y �L

←−
0 , depending on the parity of #1(lk−1 . . . l1). Then

endpoint 0̄ ∈ X ′ is not capped and thus always accessible in E-embeddings, see Figure 9.

From now on we assume in this subsection that X ′ is not the Knaster continuum and
thus ν 6= 10∞.

0̄

Figure 9. Neighbourhood of the end-point 0̄ of the Knaster continuum
(ν = 10∞) in an E-embedding.

It is well known (see e.g. [5]) that X ′ contains endpoints if and only if the critical point
c of map T is recurrent (i.e., T n(c) get arbitrary close to c as n→∞).

Definition 7.5. Fix a kneading sequence ν and let e ∈ X ′ be an endpoint and thus
τL(←−e ) = ∞ (τR(←−e ) = ∞). A sequence (mi)i∈N ⊂ N is called the complete sequence
for e, if for every n ∈ N such that en . . . e1 = c1c2 . . . cn and #1(c1c2 . . . cn) is odd (even)
there exist i ∈ N such that mi = n.

From τL(←−e ) =∞ (or τR(←−e ) =∞) it follows that the sequence (mi)i∈N indeed exists.
The main result in this subsection is that every endpoint of X ′ (where X ′ is not the
Knaster continuum) which is not contained in UL is capped in an E-embedding of
X ′ which is non-equivalent to Brucks-Diamond embedding from [14]. In the proof of
Theorem 7.12 we construct an increasing subsequence (ni)i∈N ⊂ (mi)i∈N and basic arcs
A(←−x O(i)), A(←−x I(i)) ⊂ R ⊂ X ′ such that

(2) ←−x O(i) = 1∞aik . . . a
i
10c1c2 . . . cni

←−x I(i) = 1∞aik . . . a
i
11c1c2 . . . cni .

and←−x O(i) ≺L ←−e ≺L ←−x I(i) or←−x I(i) ≺L ←−e ≺L ←−x O(i) for some admissible word aik . . . a
i
1 ∈

{0, 1}k. Note that the arcs A(←−x O(i)) and A(←−x I(i)) are joined by left (right) semi-circle.
Here R denotes the arc-component of the fixed point (. . . , 1, 1) which is a dense line in
X ′ independently on the choice of ν (see Proposition 1 in [13]).

Remark 7.6. Let e ∈ X ′ be an endpoint and thus τL(←−e ) = ∞ (τR(←−e ) = ∞). Then
#1(c1 . . . cmi) is odd (even) and #1(c1 . . . cmi+1−mi) is even (even) for every i ∈ N.

Definition 7.7. For ν = c1c2 . . . we define

κ := min{i− 2 : i ≥ 3, ci = 1}.

Remark 7.8. Definition 7.7 says that the beginning of the kneading sequence is ν =
10κ1 . . .. If κ = 1, since we restrict to non-renormalizable case for T , we can conclude
even more, namely that ν = 10(11)n0 . . ., for some n ∈ N.

Remark 7.9. Fix the kneading sequence ν. Assume that an−1 . . . a1 ∈ {0, 1}n is admis-
sible but an . . . a1 ∈ {0, 1}n is not. Then an . . . a1 ≺ c2 . . . cn+1.
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Lemma 7.10. Let ν be an admissible kneading sequence. A word c2 . . . c
∗
n is not ad-

missible if and only if either #1(c2 . . . cn) is odd or there exists k ∈ {3, . . . , n} such that
ck . . . cn = c2 . . . cn−k+2 and #1(ck . . . cn) is odd.

Proof. Assume that c2 . . . c
∗
n is not admissible, so there exists i ∈ {2, . . . , n} such that

ci . . . c
∗
n is not admissible. Take the largest such index i and note that ci . . . cn =

c2 . . . cn−i+2 and c2 . . . c
∗
n−i+2 ≺ c2 . . . cn−i+2. Let us assume by contradiction that

#1(c2 . . . cn−i+2) is even. If cn−i+2 = 0 (cn−i+2 = 1) it follows that #1(c2 . . . cn−i+1)
is even (odd) and in both cases c2 . . . c

∗
n−i+2 � c2 . . . cn−i+2 and thus c2 . . . c

∗
n−i+2 is

admissible, a contradiction. �

Lemma 7.11. Let ν be an admissible kneading sequence and let (mi)i∈N be the complete
sequence for an endpoint e ∈ X ′. Then for every k ≥ 3 and j ∈ {0, . . . ,mi}, the word
ck . . . c

∗
mi+1−mic1c2 . . . cj is admissible for every i ∈ N. In specific, if j = 0, we set

c1 . . . cj = ∅.

Proof. Assume by contradiction that there exists k ≥ 3 and j ∈ N0 such that the
word ck . . . c

∗
mi+1−mic1c2 . . . cj is not admissible and assume that k is the largest and

j is the smallest such index. By the choice of k and j every proper subword of
ck . . . c

∗
mi+1−mic1c2 . . . cj is admissible. Thus ck . . . c

∗
mi+1−mic1c2 . . . cj = c2c3 . . . cmi+1−mi−k

cmi+1−mi−k+1 . . . c
∗
mi+1−mi−k+j+1 and #1(c2c3 . . . c

∗
mi+1−mi−k+j+1) is even by Lemma 7.10.

Furthermore, Lemma 7.10 implies that #1(ck . . . c
∗
mi+1−mi = c2 . . . cmi+1−mi−k−1) is even.

If j = 1, then both #1(ck . . . c
∗
mi+1−mi) and #1(ck . . . c

∗
mi+1−mic1) are even, which is

impossible.

If j ≥ 2, it follows by Lemma 7.10 that #1(c2 . . . cj) is odd. Thus c2 . . . c
∗
j = cmi+1−mi−k+1

. . . cmi+1−mi−k+j+1 is not admissible, which is a contradiction, since c2c3 . . . c
∗
j ⊂ ν.

Let c1 . . . cj be an empty word. Then ck . . . cmi+1−mi = c2c3 . . . cmi+1−mi−kcmi+1−mi−k+1

and #1(c2c3 . . . cmi+1−mi−kcmi+1−mi−k+1) is odd. Let l be the maximal natural number
such that cmi+1−mi+1 . . . cmi+1−mi+l = cmi+1−mi−k+2 . . . cmi+1−mi−k+l+1, i.e.,

ck . . . cmi+1−mi+l = c2c3 . . . cmi+1−mi−k+l+1

and cmi+1−mi+l+1 6= cmi+1−mi−k+l+2. Such l indeed exists since (mi) is complete. Note
that cmi+1−mi−k+2 . . . cmi+1−mi−k+l+1 = c1 . . . cl and #1(c1 . . . cl+1) is odd by Lemma 7.10.
Thus #1(c1 . . . clc

∗
l+1) is even and we conclude that #1(c2 . . . cmi+1−mi−k+l+2) is odd.

Since c2 . . . c
∗
mi+1−mi−k+l+2 = ck . . . cmi+1−mi+l+1 is admissible, we get a contradiction.

�

The main idea of the proof of the following theorem is illustrated in the Example 6.

Theorem 7.12. Let e ∈ X ′ be an endpoint such that τR(←−e ) = ∞ (τL(←−e ) = ∞) and
let L = . . . l2l1 6= 0∞ln . . . l1 be admissible and ν 6= 10∞. If L and ←−e have different tails,
then e is capped from the right (left).
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Proof. Let (mi)i∈N ⊂ N be the complete sequence for an endpoint e where τR(←−e ) =∞.
The proof works analogously if τL(←−e ) = ∞. We will find infinitely many i ∈ N such
that ←−x O(i) �L ←−e �L ←−x I(i) (or with reversed inequalities) and arcs ←−x O(i) and ←−x I(i) are
joined by a semi-circle on the right.

Fix some i ∈ N and let M1(i) > mi + 1 be the smallest natural number such that
lM1(i) = e∗M1(i). Note that such M1(i) exists, otherwise ←−e and L have the same tail.

Assume that M1(i) = mi+1. Note that then eM1(i)−1 . . . emi+1 = c2 . . . ck = 0κ1cκ+2 . . . ck
(cκ+2 . . . ck can be empty) and eM1(i) = 1. Then lM1(i) . . . lmi+1 = 0κ+11cκ+3 . . . ck, which
is not admissible.

Assume that M1(i) = mi+1 + 1. By the paragraph above M1(i + 1) 6= mi+2. If
M1(i+ 1) = mi+2 + 1, then lmi+2

. . . lmi+1+2lmi+1+1 = c1 . . . cmi+2−mi+1+1c
∗
mi+2−mi+1

which

is not admissible since c1 . . . cmi+2−mi+1
is even by Remark 7.6. So either M1(i) ∈

{mi + 2, . . .mi+1 − 1} or there is k ∈ N such that M1(i + k) = M1(i). Note that there
is infinitely many i ∈ N such that M1(i) ∈ {mi + 2, . . .mi+1 − 1} and from now on we
work with such i ∈ N.

If both of the following sequences are admissible, we set:

←−x O(i) = 1∞e∗M1(i)eM1(i)−1 . . . emi+20emi . . . e1,

←−x I(i) = 1∞e∗M1(i)eM1(i)−1 . . . emi+21emi . . . e1.

a) Assume that #1(emi . . . e1) and #1(lmi . . . l1) have the same parity and emi+1

= lmi+1 = 0.
Then it follows that ←−e �L ←−x I(i). Because lM1(i)−1 . . . lmi+2 = eM1(i)−1 . . . emi+2 the
parities of #1(eM1(i)−1 . . . e1) and #1(lM1(i)−1 . . . l1) are the same and because lM1(i) =

e∗M1(i) it follows that ←−x O(i) �L ←−e .

b) Assume that #1(emi . . . e1) and #1(lmi . . . l1) have the same parity and emi+1 =
lmi+1 = 1.
Then it follows that ←−e �L ←−x O(i). Because lM1(i)−1 . . . lmi+2 = eM1(i)−1 . . . emi+2 the
parities of #1(eM1(i)−1 . . . e1) and #1(lM1(i)−1 . . . l1) are the same and because lM1(i) =

e∗M1(i) it follows that ←−x I(i) �L ←−e .

c) Assume that #1(emi . . . e1) and #1(lmi . . . l1) have the same parity and emi+1 = 1 6=
0 = lmi+1.
Then ←−x O(i) �L ←−e . Since the parities of #1(eM1(i)−1 . . . e1) and #1(lM1(i)−1 . . . l1) are

different and lM1(i) = e∗M1(i), it follows that ←−e �L ←−x I(i).

d) Assume that #1(emi . . . e1) and #1(lmi . . . l1) have the same parity and emi+1 = 0 6=
1 = lmi+1.
Then ←−x I(i) �L ←−e . Since the parities of #1(eM1(i)−1 . . . e1) and #1(lM1(i)−1 . . . l1) are

different and lM1(i) = e∗M1(i), it follows that ←−e �L ←−x O(i).
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Note that if #1(emi . . . e1) and #1(lmi . . . l1) are of different parities, then all the in-
equalities in cases a), b), c) and d) are reversed and we use analogous arguments to
conclude that either ←−x O(i) ≺L ←−e ≺L ←−x I(i) or ←−x I(i) ≺L ←−e ≺L ←−x O(i).

Now assume that one of e∗M1(i)eM1(i)−1 . . . emi+2e
(∗)
mi+1 . . . e1 is not admissible (where s(∗)

means s∗ or s). Then we set x
O(i)
M1(i) = x

I(i)
M1(i) = eM1(i). If eM1(i)+1 = lM1(i)+1, then we set

x
O(i)
M1(i)+1 = x

I(i)
M1(i)+1 = e∗M1(i)+1 and we argue that e∗M1(i)+1eM1(i) . . . emi+2e

(∗)
mi+1 . . . e1 =

e∗M1(i)+110κ−11 . . . e1 are admissible words. Indeed, word eM1(i) . . . emi+2e
(∗)
mi+1 . . . e1 is

admissible by Lemma 7.11. If e∗M1(i)+110κ−11 . . . were not admissible, then T 3(c) > T 4(c)
which is a contradiction with T being non-renormalizable. So the following sequences
are admissible:

←−x O(i) = 1∞e∗M1(i)+1eM1(i) . . . emi+20emi . . . e1,
←−x I(i) = 1∞e∗M1(i)+1eM1(i) . . . emi+21emi . . . e1,

and ←−x O(i) �L ←−e �L ←−x I(i) or ←−x I(i) �L ←−e �L ←−x O(i).

Assume that e∗M1(i)+1 = lM1(i)+1. Set x
O(i)
M1(i)+1 = x

I(i)
M1(i)+1 = eM1(i)+1. Then the words

eM1(i)+1eM1(i) . . . e
(∗)
mi+1emi . . . e1 are admissible by Lemma 7.11, if M1(i) + 1 6= mi+1− 1.

Now say that M1(i) = mi+1−2. By the assumption in the beginning of this paragraph,

at least one of the words e∗mi+1−2emi+1−3 . . . emi+1e
(∗)
mi+1 . . . e1 is not admissible.

a) Say ν = 10κ1 . . ., where κ > 1. By Lemma 7.11, e∗mi+1−2emi+1−3 . . . = c∗3c4c5 . . . =

10κ−21 . . . is always admissible, a contradiction.
b) Say that ν = 10(11)n0 . . .. Then e∗mi+1−2emi+1−3 . . . = 0(11)n−110 . . . is again always

admissible, because #1(0(11)n−11) is odd, a contradiction.

Thus caps have been constructed except in the following case:

(one of) e∗M1(i)eM1(i)−1 . . . emi+2e
(∗)
mi+1 . . . e1 is not admissible and e∗M1(i)+1 = lM1(i)+1.

For j > 1 denote by Mj(i) the smallest k ∈ N such that k > Mj−1(i) and e∗k = lk. By
the previous paragraph, it follows that M2(i) < mi+1− 1. Take the largest N ∈ N such
that MN(i) < mi+1 − 1. Note that for odd j ∈ {1, . . . N} and

←−x O(i) = 1∞e∗Mj(i)
eMj(i)−1 . . . emi+20emi . . . e1,

←−x I(i) = 1∞e∗Mj(i)
eMj(i)−1 . . . emi+21emi . . . e1,

if follows that ←−x O(i) �L ←−e �L ←−x I(i) or ←−x I(i) �L ←−e �L ←−x O(i). The conclusion follows
from the fact that #1(lMj(i)−1 . . . lmi+2) and #1(eMj(i)−1 . . . emi+2) are of the same parity
since j is odd.

Assume that for every odd j ∈ {1, . . . , N} we have that 1∞e∗Mj(i)
eMj(i)−1 . . . emi+2e

(∗)
mi+1

emi . . . e1 are not admissible. If Mj+1(i) > Mj(i) + 1, we set:

←−x O(i) = 1∞e∗Mj(i)+1eMj(i) . . . emi+20emi . . . e1,

←−x I(i) = 1∞e∗Mj(i)+1eMj(i) . . . emi+21emi . . . e1,
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and argue that both are admissible as in preceding paragraphs. Calculations as above
give ←−x O(i) �L ←−e �L ←−x I(i) or ←−x I(i) �L ←−e �L ←−x O(i).

The situation left to consider is when 1∞e∗Mj(i)
eMj(i)−1 . . . emi+2e

(∗)
mi+1emi . . . e1 are not

admissible and Mj+1(i) = Mj(i) + 1 for every odd j ∈ {1, . . . , N}. Note that N must

be even. Otherwise 1∞e∗mi+1−2emi+1−3 . . . emi+2e
(∗)
mi+1emi . . . e1 are not admissible and we

have already argued that this is not possible.

Thus we conclude that L is of the form:

. . . eMN (i)+1e
∗
MN (i)e

∗
MN (i)−1eMN (i)−2 . . . eM1(i)+2e

∗
M1(i)+1e

∗
M1(i)eM1(i)−1 . . . emi+2lmi+1 . . . l1.

Note that #1(e∗MN (i)e
∗
MN (i)−1eMN (i)−2 . . . eM1(i)+2e

∗
M1(i)+1e

∗
M1(i)eM1(i)−1 . . . emi+2) is of the

same parity as #1(eMN (i)eMN (i)−1eMN (i)−2 . . . eM1(i)+2eM1(i)+1eM1(i)eM1(i)−1 . . . emi+2), be-
cause changes in L compared with←−e always appear in pairs (as two consecutive letters).
We set

←−x O(i) = 1∞e∗mi+1−1emi+1−2 . . . emi+20emi . . . e1,

←−x I(i) = 1∞e∗mi+1−1emi+1−2 . . . emi+21emi . . . e1,

and note that

←−x O(i) �L ←−e �L ←−x I(i) (or with reversed inequalities). Also note that ←−x I(i) and ←−x O(i)

set in such a way are always admissible by Lemma 7.11 and since emi+1−1 = c2 = 0.

We have constructed the sequence corresponding to basic arc with the following prop-
erties: ←−x O(i) ≺L ←−e ≺L ←−x I(i) or ←−x I(i) ≺L ←−e ≺L ←−x O(i), ←−x O(i) and ←−x I(i) are joined on
the right and ←−x O(i),←−x I(i) →←−e as i→∞. Since that can be done for infinitely many
i ∈ N, this concludes the proof. �

Example 6. Let X ′ be the inverse limit space with the corresponding kneading se-
quence ν = (100111101011010111)∞. Note first that #1(100111101011010111) is even
and every subword of ν is admissible; thus ν is an admissible kneading sequence. Let us
study the cappedness of the endpoint e ∈ X ′ with the itinerary ē = (100111101011010
111)∞.(100111101011010111)∞ in an embedding determined by L = (010111110011100
111)∞. It follows that←−x O(i) ≺L ←−e , because #1(100111101011010111) and #1(0101111
10011100111) are both even. Note that M1(i) := mi + 5 is the smallest index strictly
greater than mi + 1 such that e∗M1(i) = lM1(i). We obtain the following situation:

. . . (100111101011010111)(100111101011010111)i =←−e

. . . (010111110011100111)(010111110011100111)i = L

1∞(110111101011010110)(100111101011010111)i =←−x O(i)

1∞(110111101011010111)(100111101011010111)i =←−x I(i)
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where we denoted with bold the letters of ←−e and L which differ for indices larger than
mi. Note that M3(i) = mi + 10 but the word 00110 = e∗mi+10emi+9 . . . emi+6 is not

admissible and thus we need to set x
O(i)
M3(i) = x

I(i)
M3(i) = eM3(i) = 1. Note that M5(i) =

mi+17 = mi+1−1. Thus we set x
O(i)
M5(i) = x

I(i)
M5(i) = e∗M5(i). Because #1(emi+16 . . . e1) and

#1(lmi+16 . . . l1) are of the same parity we obtain that ←−e ≺L ←−x I(i). Lemma 7.11 again
ensures that every subword of ←−x O(i) is admissible. Therefore points xO(i), xI(i) ∈ X ′

cap the point e from the right.

If an endpoint e is capped, we still cannot conclude that it is not accessible, see e.g.
Figure 10. However, if we know that the length of basic arcs arbitrary close to←−e has a
lower bound, the conclusion follows. Thus we introduce the notion of long-branchness
in the following definition.

Definition 7.13. Let T : I → I be a continuous map. The lap of T is a maximal
interval of monotonicity of T and a branch of T is an image of a lap. We say that T is
long-branched, if there exists δ > 0 such that the length of all branches of T n is larger
than δ for all n ∈ N.

Remark 7.14. Note that if critical point of T is periodic or non-recurrent, then T is
long-branched.

Corollary 7.15. Assume T 6= T2 is long-branched and let e ∈ X ′ be an endpoint of
X ′. Assume X ′ is embedded in the plane with respect to L where A(L) 6⊂ C. If ←−e and
L have different tails, then e is not accessible.

Proof. By the long-branchedness of the bonding map T it holds that in a sufficiently
small neighbourhood of endpoint e every point e 6= x ∈ A(←−e ) has a neighbourhood
homeomorphic to the Cantor set of arcs. Since e ∈ X ′ is capped by Theorem 7.12 the
proof follows. �

e

Figure 10. Neighbourhood of an endpoint e. Note that e is capped but
also accessible.

We merge the knowledge from this and preceding section and give some interesting
examples of embeddings of X ′.

Example 7. Let ν = (101)∞ and let L = (01k)∞ for any k ≥ 2. Set B = an . . . a1 ∈
{0, 1}n for some n ∈ N. If ln+1B is not admissible, then . . . ln+3l

∗
n+2l

∗
n+1B is admissible

by the choice of k and since every non-admissible word for ν = (101)∞ contains 00. Tail
L is thus not altered by B for every finite admissible word B (recall Definition 6.2).
Therefore, it follows that Lan...a1 = San...a1 ⊂ UL. We conclude that UL is fully accessible
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and it is the only non-degenerate accessible set. By Corollary 7.15, endpoints of X ′ are
not accessible. The remaining point on the circle of prime ends corresponds to the
simple dense canal.

Example 8. Let ν = (101)∞ and let L = (01)∞. Note that S = (10)∞ 6⊂ UL and
S = S0. Thus, B = 0 alters L (recall Definition 6.2; here A1 = 0, Ai = 01 for all
i ≥ 2). Since ν is periodic, it follows from Corollary 5.15 that both UL and US are fully
accessible. As in the example above (see also Lemma 9.1) one can show that no other
point from X ′ is accessible. We conclude that there are two simple dense canals with
shores UL and US.

Example 9. Take ν = (10011001001111)∞, B = 001, A = 0011, C = 1111 and
L = . . . ABABA as in Example 5. Recall that at least three arc-components (which are
dense lines) are fully accessible. Further calculations show that no other tail can be the
top or the bottom of a cylinder. By Corollary 7.15 endpoints from X ′ are not accessible.
So the remaining three points on the circle of prime ends correspond to three simple
dense canals with shores from pairwise different fully accessible arc-components which
are lines. In comparison, the kneading sequence from this example has height 2/7 (see
the Definition 11.1) and belongs to the rational interior case, so in Brucks-Diamond
embedding X ′ contains 7 fully accessible arc-components which are shores of 7 simple
dense canals (see Section 11 in this paper or [10]).

7.2. Accessible folding points when ν is preperiodic. In this subsection we as-
sume that ν = c1 . . . ck(ck+1 . . . ck+n)∞ and that ck 6= ck+n, since otherwise also ν =
c1 . . . ck−1(ck . . . ck+n−1)∞. By Remark 5.17 X ′ contains n folding points which are not
endpoints with symbolic descriptions:

σi((ck+1 . . . ck+n)∞.(ck+1 . . . ck+n)∞)

for i ∈ {1, . . . n}. In this subsection we study the accessibility of folding points that are
not contained in extrema of cylinders in E-embeddings of X ′ when ν is preperiodic.

Let Q ⊂ R2 be an arc. From now onwards let Int(Q) denote the points from Q, which
are not endpoints of Q.

Remark 7.16. Let ν = c1 . . . ck(ck+1 . . . ck+n)∞ and let p ∈ X ′ be a folding point. Then
an arc-component of p can contain at most one folding point. Also, since ck 6= cn+k it
holds that p ∈ Int(A(←−p )).

The following lemma restricts the search for accessible folding points which are not
tops/bottoms of cylinders to the case where ν = 10(c3 . . . cn+2)∞, i.e., k = 2.

Proposition 7.17. Assume c is preperiodic and such that T 3(c) is not periodic. Embed
X ′ in the plane with respect to L 6= 0∞ln . . . l1. A folding point p ∈ X ′ is accessible if
and only if the basic arc A(←−p ) is top or bottom of a finite cylinder.

Proof. Note that ν = c1 . . . ck(ck+1 . . . ck+n)∞ where k > 2. Take a folding point p ∈ X ′
with the symbolic description

p̄ = (ck+1 . . . ck+n)∞ck+1 . . . ck+i.ck+i+1 . . . ck+n(ck+1 . . . ck+n)∞
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and assume it is not on the top or bottom of any cylinder in X ′. Denote π0(A(←−p )) =:
[T l(c), T r(c)]. By Remark 7.16 it holds that π0(p) ∈ (T l(c), T r(c)).
Denote by (pM)M∈N ⊂ X ′ the points with the symbolic description

p̄M := 1∞c1 . . . ck(ck+1 . . . ck+n)Mck+1 . . . ck+i.ck+i+1 . . . ck+n(ck+1 . . . ck+n)∞

Note that points pM converge to p as M →∞ and the corresponding basic arcs A(←−p M)
project to [T l(c), T k+i+1(c)] (we refer to them as left) or [T k+i+1(c), T r(c)] (referred to as
right) depending on the parity of M . We will find long basic arcs (i.e., arcs projecting
with π0 also to [T l(c), T r(c)]) converging to A(←−p ) from both sides. Since c is preperiodic
there exists a neighbourhood U of A(←−p ) which contains only basic arcs which project to
[T l(c), T r(c)], [T l(c), T k+i+1(c)] or [T k+i+1(c), T r(c)] (i.e., only long or left/right arcs).

Assume that all but finitely many long arcs in U are greater than A(←−p ). Since k > 2,
note that for every M > 0 basic arcs 1∞ck(ck+1 . . . ck+n)Mck+1 . . . ck+i are long. Since
ck 6= ck+n it holds that both 1∞ck(ck+1 . . . ck+n)Mck+1 . . . ck+i �L ←−p and ←−p M �L ←−p .
Thus, it follows that A(←−p ) is at the bottom of some cylinder, a contradiction. The
proof goes analogously if all but finitely many long arcs are smaller than A(←−p ). �

Therefore, by Proposition 7.17, if we want to find accessible folding points which are
not at the top/bottom of any cylinder it is enough to study cases ν = 10(c3 . . . cn+2)∞

where cn+2 = 1.

Remark 7.18. Assume c is preperiodic and p is an accessible folding point of an em-
bedding of X ′. By Corollary 3.3 and since every arc-component contains at most one
folding point, only the following three cases can occur:

(1) ←−p is the top or the bottom of some cylinder; then Up is fully accessible.

(2) ←−p is not the top or the bottom of any cylinder, but
←−−
r(p) or

←−−
l(p) is; then one

component of Up is fully accessible, and the other is not accessible. See Figure 6.

(3) ←−p ,
←−−
r(p) and

←−−
l(p) are not extrema of any cylinder; then c is order reversing and

p is the only accessible point of Up. See Figure 7(c).

Definition 7.19. We say that an accessible folding point p is accessible of Type i if it
satisfies the condition i from Remark 7.18 for i ∈ {1, 2, 3}.

As it turns out, all Types of accessible folding points can occur in E-embeddings. In
the following subsections we describe how they can be constructed in preperiodic orbit
case (when T 3(c) is periodic) and give examples of such constructions. We will see that
the standard Brucks-Diamond embedding does not allow Type 3 folding points for any
X ′ (see Section 11).

7.2.1. Type 2. First we give examples of X ′ which cannot be E-embedded with Type 2
folding points. Then we show in general how to construct a Type 2 accessible folding
point and give an example of such construction in both the order preserving and the
order reversing case.



ACCESSIBLE POINTS OF PLANAR EMBEDDINGS OF TENT INVERSE LIMIT SPACES 27

Lemma 7.20. Let ν = 10(c3 . . . cn+2)∞ and assume that c∗i ci+1 . . . cn+2(c3 . . . cn+2)M

is admissible for all i ∈ {3, . . . , n + 1} and for all but finitely many M ∈ N. Then
no folding point is Type 2 in any E-embedding of X ′ which is non-equivalent to the
Brucks-Diamond (L = 0∞1) embedding.

Proof. Take a folding point p ∈ X ′ with symbolic description p̄ = (c3 . . . cn+2)∞.(c3 . . .
cn+2)∞. We will try to reconstruct L which embeds p as Type 2 and see that this is not
possible.

Assume first that #1(c3 . . . cn+2) is odd and for some natural number M we have (the
following (or with reversed inequalities) needs to be satisfied in order for p to be a Type
2 folding point, see Figure 12):

. . . 0(c3 . . . cn+2)M �L . . . 1(c3 . . . cn+2)M

. . . c∗i ci+1 . . . cn+2(c3 . . . cn+2)M ≺L . . . cici+1 . . . cn+2(c3 . . . cn+2)M

. . . 0(c3 . . . cn+2)M+k ≺L . . . 1(c3 . . . cn+2)M+k

. . . c∗i ci+1 . . . cn+2(c3 . . . cn+2)M+k ≺L . . . cici+1 . . . cn+2(c3 . . . cn+2)M+k

. . . 0(c3 . . . cn+2)M+N �L . . . 1(c3 . . . cn+2)M+N

. . . c∗n+1cn+2(c3 . . . cn+2)M+N ≺L . . . cn+1cn+2(c3 . . . cn+2)M+N

for all i ∈ {3, . . . , n + 1} and all k ∈ {1, . . . , N − 1}, where natural number N > 1 is
even.
If #1((c3 . . . cn+2)M) is of the same parity as #1(lMn . . . l1), then lMn+1 = 0, and if
#1((c3 . . . cn+2)M) is of different parity as #1(lMn . . . l1), then lMn+1 = 1. In any
case, #1(cn+2(c3 . . . cn+2)M) is of different parity as #1(lMn+1 . . . l1) so lMn+2 = c∗n+1.
So #1(cn+1cn+2(c3 . . . cn+2)M) is of the same parity as #1(lMn+2lMn+1 . . . l1) and thus
lMn+3 = cn. Continuing further, we get

l(M+N)n+2 . . . lMn+2 = c∗n+1c
∗
n+2(c3 . . . cn+2)N−1c3 . . . cnc

∗
n+1.

Thus c∗n+1 = 1, #1(c3 . . . cn) is even and the word on the right side of the last equation
above is equal to 10(c3 . . . cn+2)N−1c3 . . . cnc

∗
n+1. Note that 10(c3 . . . cn+2)N−1c3 . . . cncn+1

is even and thus 10(c3 . . . cn+2)N−1c3 . . . cnc
∗
n+1 is not admissible by Lemma 7.10, a

contradiction.

Assume that #1(c3 . . . cn+2) is even. Note that in this case N is not necessarily even, but
now the conclusion cn+1 = 0 implies that c3 . . . cn is odd. We continue with arguments as
in the paragraphs above. Since #1(c3 . . . cn+2) is even the word 10(c3 . . . cn+2)N−1c3 . . . cn
cn+1 is even and thus 10(c3 . . . cn+2)N−1c3 . . . cnc

∗
n+1 is again not admissible by Lemma 7.10,

a contradiction.

Note that the proof works analogously for other folding points from the space X ′. �

Next we give examples of preperiodic ν where no folding point can be E-embedded as
Type 2.

Example 10. The assumptions from Lemma 7.20 hold for e.g. ν = 10(0α1β) for all
α, β ∈ N.
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The proof of the following lemma follows directly, see Figure 6.

Lemma 7.21 (Order preserving case). Let ν = 10(c3 . . . cn+2)∞, cn+2 = 1, and #1(c3 . . .
cn+2) even. Let p̄ = (c3 . . . cn+2)∞c3 . . . ci.ci+1 . . . cn+2(c3 . . . cn+2)∞ be a symbolic de-
scription of a folding point p ∈ X ′. Then p is a Type 2 folding point if and only if there
exists a natural number M such that

. . . c∗jcj+1 . . . cn+2(c3 . . . cn+2)M+Nc3 . . . ci �L . . . cjcj+1 . . . cn+2(c3 . . . cn+2)M+Nc3 . . . ci,

for all N ∈ N and all j ∈ {3, . . . , 1 +n} for which c∗jcj+1 . . . cn+2(c3 . . . cn+2)M+Nc3 . . . ci
is admissible, and

. . . 0(c3 . . . cn+2)M+N ′c3 . . . ci ≺L . . . 1(c3 . . . cn+2)M+N ′c3 . . . ci,

for infinitely many N ′ ∈ N, or with reversed inequalities. See e.g. Figure 6.

We give an example that satisfies the assumptions of Lemma 7.21.

Example 11 (Type 2, order preserving case). Take ν = 10(01101001)∞, L = (10100101
11001001)∞ and

p̄ = (01101001)∞01.101001(01101001)∞.

Then
←−−
r(p) is the smallest left-infinite tail so it is the smallest in cylinder [0]. As the

calculations below show, all long basic arcs in small neighbourhood of A(←−p ) are below
A(←−p ) and left arcs are both above and below A(←−p ), depending on the parity of period
which corresponds with ←−p in the left infinite description of basic arcs, see Figure 11.

. . . 0(01101001)2N01 �L ←−p ,

. . . 0(01101001)2N+101 ≺L ←−p ,
. . . 11(01101001)N01 ≺L ←−p ,
. . . 101(01101001)N01 ≺L ←−p ,

. . . 11001(01101001)N01 ≺L ←−p ,
. . . 001001(01101001)N01 ≺L ←−p ,
. . . 0101001(01101001)N01 ≺L ←−p ,
. . . 11101001(01101001)N01 ≺L ←−p ,

for all N ∈ N. Further calculations show that only tails of L and S can appear as the
extrema of cylinders. By Proposition 5.6, the arc-component UL is fully accessible and
since UL contains no folding points, it corresponds to an open interval on the circle of
prime ends. The accessible part of US corresponds to a half-open interval on the circle
of prime ends, where the endpoint of the half-open interval corresponds to accessible
folding point p. By further calculations we obtain that other folding points are not
accessible, so the remaining point on the circle of prime ends corresponds to a simple
dense canal with shores from UL and US.

The proof of the following lemma follows directly from assumptions (see Figure 12).
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p

S =
←−−
r(p)

Figure 11. Type 2 folding point from Example 11.

Lemma 7.22 (Order reversing case). Let ν = 10(c3 . . . cn+2)∞, cn+2 = 1, and #1(c3 . . .
cn+2) odd. Let p̄ = (c3 . . . cn+2)∞c3 . . . ci.ci+1 . . . cn+2(c3 . . . cn+2)∞ be a symbolic descrip-
tion of a folding point p ∈ X ′. Then p is a Type 2 folding point if and only if there
exists a natural number M such that

. . . c∗jcj+1 . . . cn+2(c3 . . . cn+2)M+Nc3 . . . ci �L . . . cjcj+1 . . . cn+2(c3 . . . cn+2)M+Nc3 . . . ci,

for all N ∈ N and all j ∈ {3, . . . , 1 +n} for which c∗jcj+1 . . . cn+2(c3 . . . cn+2)M+Nc3 . . . ci
is admissible, and

. . . 0(c3 . . . cn+2)M+2N ′c3 . . . ci ≺L . . . 1(c3 . . . cn+2)M+N ′c3 . . . ci,

and

. . . 0(c3 . . . cn+2)M+2N ′′+1c3 . . . ci �L . . . 1(c3 . . . cn+2)M+N ′′c3 . . . ci,

for infinitely many N ′ ∈ N and all but finitely many N ′′ ∈ N, or with reversed inequal-
ities.

We give an example that satisfies the assumptions of Lemma 7.22.

Example 12 (Type 2, order reversing case). Take ν = 10(011101001)∞, L = (011101
001011110010)∞ and ←−p = (011101001)∞. What follows is an easy computation:

. . . 0(011101001)2M+1 ≺L ←−p ,

. . . 0(011101001)2M �L ←−p ,
. . . 11(011101001)M ≺L ←−p ,
. . . 101(011101001)M ≺L ←−p ,

. . . 11001(011101001)M ≺L ←−p ,
. . . 001001(011101001)M ≺L ←−p ,
. . . 0101001(011101001)M ≺L ←−p ,
. . . 01101001(011101001)M ≺L ←−p ,
. . . 111101001(011101001)M ≺L ←−p ,

for every M ∈ N. So p is accessible folding point of Type 2. Note that
←−−
l(p) =

(010010111)∞01011 = S1011, see Figure 12. By further symbolic calculations we again
conclude that there is one simple dense canal for this embedding of X ′.
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p

←−−
l(p) = S1011

Figure 12. Type 2 folding point from Example 12.

7.2.2. Type 3. From now onwards we study folding points of Type 3, see Figure 13.

Remark 7.23. Let ν = 10(c3 . . . cn+2)∞ be such that #1(c3 . . . cn+2) is even and cn+2 =
1. Then X ′ does not contain folding points of Type 3.

The following lemma gives necessary and sufficient symbolic conditions for a folding
point to be E-embedded as Type 3, the proof of it again follows directly from its
assumptions.

Lemma 7.24 (Type 3). Let ν = 10(c3 . . . cn+2)∞, cn+2 = 1, and #1(c3 . . . cn+2) odd.
Let p̄ = (c3 . . . cn+2)∞c3 . . . ci.ci+1 . . . cn+2(c3 . . . cn+2)∞ be the symbolic description of a
folding point p ∈ X ′. Then p is a Type 3 folding point if and only if there exists M > 0
such that

. . . c∗jcj+1 . . . cn+2(c3 . . . cn+2)M+Nc3 . . . ci ≺L ←−p ,
for all N ∈ N and all j ∈ {3, . . . , n+ 1} for which c∗jcj+1 . . . cn+2(c3 . . . cn+2)M+Nc3 . . . ci
is admissible, and

. . . 0(c3 . . . cn+2)M+N ′c3 . . . ci �L ←−p ,
for infinitely many N ′ ∈ N, or with reversed inequalities. See Figure 13.

p

R

Figure 13. Type 3 folding point. Folding point p is accessible from the
complement by an arc R ∪ {p} ⊂ R2, where R is a ray.

The following lemma gives conditions on preperiodic order reversing ν such that no
folding point can be E-embedded as Type 3 folding point (except possibly with the
Brucks-Diamond embedding studied in detail in Section 11).

Lemma 7.25. Let ν = 10(c3 . . . cn+2)∞ be such that #1(c3 . . . cn+2) is odd, cn+2 = 1
and let c∗jcj+1 . . . cn+2(c3 . . . cn+2)Mc3 . . . ci be admissible for every j ∈ {3, . . . 1 + n} and
all M ∈ N. If cn+1 = 1 then there exists no L such that folding point p ∈ X ′ is of Type
3.
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Proof. Take a folding point p ∈ X ′ with the symbolic description

p̄ = (c3 . . . cn+2)∞c3 . . . ci.ci+1 . . . cn+2(c3 . . . cn+2)∞

for some i ∈ {3, . . . n + 2} and assume that A(←−p ) is not at the top or bottom of
any cylinder in X ′. Since c∗jcj+1 . . . cn+2(c3 . . . cn+2)Mc3 . . . ci is admissible for every
j ∈ {3, . . . n + 1} and all M ∈ N, the same calculations as in the proof of Lemma 7.20
imply that the only L which satisfies all the conditions from Lemma 7.24 is

L = . . . (c3 . . . cn00)∞lk . . . l1,

for some lk . . . l1. However, the word 00c3 . . . cn is not admissible, a contradiction. �

Example 13 (No Type 3 folding point). Note that ν = 10(0α1β)∞ for β ≥ 2 satisfies
the assumptions of Lemma 7.25. Thus no folding point from the corresponding X ′

can be embedded as Type 3 folding point using E-embeddings (except maybe Brucks-
Diamond). Note that this example also satisfies the assumptions of Lemma 7.20, so no
folding point can be E-embedded as Type 2 either. Thus in these cases a point from X ′

is accessible if and only if it is on the top or the bottom of some cylinder. So there are
m ∈ N simple dense canals, where m is the number of fully accessible arc-components
for some E-embedding of X ′.

The following lemma gives sufficient symbolic conditions on a preperiodic ν such that
every folding point can be E-embedded as accessible folding point of Type 3.

Lemma 7.26. Let ν = 10(c3 . . . cn+2)∞ be such that #1(c3 . . . cn+2) is odd and cn+2 = 1.
Assume that cn+1 = 0 and the tail (10c3 . . . cn)∞ is admissible. For every folding point
p ∈ X ′ there exists L such that p is of Type 3 in ϕL(X ′).

Proof. Take a folding point p ∈ X ′ with the symbolic description

p̄ = (c3 . . . cn+2)∞c3 . . . ci.ci+1 . . . cn+2(c3 . . . cn+2)∞

for some i ∈ {3, . . . n + 2} and assume that A(←−p ) is not on the top or bottom of any
cylinder in X ′. Denote by π0(A(←−p )) =: [T l(c), T r(c)] for some l, r ∈ N.

Let L = (c3 . . . cnc
∗
n+1c

∗
n+2)∞c3 . . . ci. Then

. . . 0(c3 . . . cn+2)mc3 . . . ci �L . . . 1(c3 . . . cn+2)mc3 . . . ci,

. . . c∗jcj+1 . . . cn+2(c3 . . . cn+2)mc3 . . . ci ≺L . . . cjcj+1 . . . cn+2(c3 . . . cn+2)mc3 . . . ci,

for every m ∈ N, every j ∈ {3, . . . n+1} and all admissible c∗jcj+1 . . . cn+2(c3 . . . cn+2)mc3

. . . ci, see Figure 13 to visualize the construction. By the assumptions we conclude that
L = (10c3 . . . cn)∞10c3 . . . ci is indeed admissible. Since #1(c3 . . . cn+2) is odd we get
pairs of basic arcs joined at a point which project with π0 to π0(p), approaching to
A(←−p ) from above from both left and right side of p, exactly as on Figure 13. �

Example 14 (Type 3 folding point). Take ν = 10(01101)∞. If we embed X ′ with
respect to admissible L = (01110)∞, then p̄ = (01101)∞.(01101)∞ is an accessible
folding point of Type 3, since it satisfies the conditions of Lemma 7.26. Note that only
UL can be the extremum of a cylinder and it corresponds to the circle of prime ends
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minus a point. The remaining point is the second kind prime end corresponding to the
accessible folding point p of Type 3. Specifically, there are no simple dense canals.

8. Extendability of σ-homeomorphism for E-embeddings

Embeddings from [16] (L = 1∞) and [14] (L = 0∞1) of X make R, C and C respectively
fully accessible as can be deduced from Proposition 5.6 and Remark 5.10 (denote the
two special embeddings from now onwards by ϕR and ϕC respectively). Additionally
it can be deduced from Proposition 5.11 that only remaining accessible points (if exis-
tent) need to be folding points. The embeddings of unimodal inverse limit spaces ϕC
follow Barge-Martin construction from [6] of attractors of orientation preserving planar
homeomorphisms so σ is extendable to R2 for these embeddings. Bruin directly showed
in [16] that σ-homeomorphism can be extended to the plane for embeddings ϕR. Now
we show that except for mentioned standard embedding, σ is not extendable for any
E-embedding of X ′.

Note that if σ : ϕL(X)→ ϕL(X) is extendable to R2, then σ|ϕL(X′) : ϕL(X ′)→ ϕL(X ′)
is also extendable to R2.

The following theorem answers the question weather for non-standard E-embeddings
σ-homeomorphism is extendable to the whole plane which was posed by Boyland, de
Carvalho and Hall in [10].

Theorem 8.1. If X ′ is embedded in the plane with respect to L where A(L) 6⊂ C,R, then
the shift homeomorphism σ : ϕL(X ′)→ ϕL(X ′) cannot be extended to a homeomorphism
of the plane.

Proof. Let ν = c1c2 . . . be a kneading sequence and A(L) 6⊂ C,R and assume by con-
tradiction that σ : ϕL(X ′) → ϕL(X ′) is extendable to R2. Let (ni) be an increasing
sequence in N such that lni+3lni+2 = 01. Since A(L) 6⊂ C,R, the sequence (ni) is indeed
well defined. For i ∈ N define admissible tails

←−xi = 1∞1011ni ,

←−yi = 1∞0111ni ,
←−zi = 1∞1101ni .

Note that ←−xi is between ←−yi and ←−zi and ←−xi1 is the largest or the smallest among the
admissible sequences ←−xi1, ←−yi 1 and ←−zi 1 because of the chosen lni+3lni+2 = 01.
For i large enough, note that π0(←−xi1) = [T 2(c), T (c)] so A(←−xi1) is a horizontal arc in
the plane of length T (c) − T 2(c) =: δ. Note also that π0(←−xi ) = π0(←−yi ) = π0(←−zi ) =
[T 2(c), T (c)] for i large enough. Let ←−xi ′ = π−1

0 ([c, T (c)]) ∩←−xi , ←−yi ′ = π−1
0 ([c, T (c)]) ∩←−yi

and ←−zi ′ = π−1
0 ([c, T (c)])∩←−zi , see Figure 14, left picture. Denote by Ai ⊂ R2 (Bi ⊂ R2)

the vertical segment which joins the left (right) endpoints of ←−yi ′ and ←−zi ′. Note that
diam (Ai), diam (Bi)→ 0 as i→∞. Also D = Ai ∪←−yi ′ ∪ Bi ∪←−zi ′ separates the plane,
denote the bounded component of R2 \D by U ⊂ R2. Note that Int←−xi ′ ⊂ U .
Now note that σ(←−xi ′) = ←−xi1 and similarly for ←−yi ′,←−zi ′. Since ←−xi1 is the smallest or the
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largest among ←−xi1,←−yi 1,←−zi 1 and σ is extendable, at least one σ(Ai) or σ(Bi) has length
greater than δ, see Figure 14. This contradicts the continuity of σ. �

←−zi

←−xi

←−yi

π0

T 2(c) c T (c)

Ai Bi

U

←−zi ′

←−xi ′

←−yi ′

σ

←−zi 1 = σ(←−zi ′)

←−yi1 = σ(←−yi ′)

←−xi1 = σ(←−xi ′)

π0

T 2(c) c T (c)

σ(Ai)

σ(Bi)

σ(U)

Figure 14. Shuffling of basic arcs from the proof of Theorem 8.1.

9. E-embeddings of X ′ with two fully accessible arc-components

In this section we study E-embeddings of an arbitrary X ′ that allow at least two fully
accessible (dense) arc-components.

Lemma 9.1. Let ν = 10κ1 . . . and embed X ′ with respect to L = . . . 0κ10κ10κ1. The
smallest left-infinite tail with respect to ≺L is S = S0 = . . . 10κ10κ10κ 6⊂ UL. Moreover,
both UL and US are fully accessible and dense in X ′.

Proof. It is straightforward to calculate S, infinitely many changes occur because 0κ+1

is not admissible, i.e., symbol 0 alters L, see Definition 6.2.

To prove that UL and US are fully accessible, it is enough to show that every basic arc
in UL ∪ US is at the top or the bottom of some cylinder.
Proposition 5.6 shows that UL is fully accessible. Assume that←−x ⊂ US and take k ∈ N
such that xk+i = sk+i for every i ∈ N and such that κ+ 1 divides k, where S = . . . s2s1.
Then ←−x = . . . 10κ10κxk . . . x1. Note that if #1(10κxk . . . x1) and #1(lk+κ+1 . . . l1) have
the same parity, then S10κxk...x1 =←−x and L10κxk...x1 =←−x in the other case.

To show that UL and US are dense, fix a point x ∈ X ′ with backward itinerary ←−x =
. . . x2x1 and fix n ∈ N. Denote ν = 10κ10κ210κ31 . . ., where κ2, κ3 ≥ 0. If κ3 = 0, then
for γ large the tail (0κ1)∞0κ2101γxn . . . x1 is admissible (recall that X ′ is assumed to be
non-renormalizable thus if κ = 1, then ν = 10(1)α0 . . . for even α > 1). If κ3 > 1 then
for γ large enough the tail (0κ1)∞0κ21γxn . . . x1 is admissible. So there are points from
both UL and US arbitrary close to x. �

Theorem 9.2. For every X ′ there exists a planar embedding with two non-degenerate
fully accessible dense arc-components.

Proof. Let ν = 10κ1 . . . and construct ϕL(X ′) with respect to L = . . . 0κ10κ10κ1. Using
Lemma 9.1 we conclude that US and UL are fully accessible and dense and the claim
follows. �
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In a special case when the orbit of c is finite and only UL and US are fully accessible
get the following corollary.

Corollary 9.3. If orbit of the critical point is finite and only UL and US are fully
accessible, then there exists a planar embedding of X ′ with two simple dense canals.

Proof. Take the embedding constructed in Lemma 9.1. Note that UL and US do not
contain endpoints for any chosen ν = 10κ1 . . . (since the kneading sequence ν = (10κ)∞

does not appear as a kneading sequence in the tent map family) and are thus lines.
If ν is periodic, the endpoints of X ′ are not accessible by Corollary 7.15. That in
combination with Proposition 4.4 gives two simple dense canals. If ν is preperiodic and
T 3(c) is not periodic, the conclusion again follows analogously as above. We only have
to argue that Type 3 folding points do not exist for a chosen L. Since L is periodic of
period κ+ 1, it follows that σκ+1 : ϕL(X ′)→ σκ+1(ϕL(X ′)) is extendable to the whole
plane.
Assume that the point p ∈ X ′ is a Type 3 folding point. Thus σκ+1(p) is also Type 3
folding point. For ν = 10(c3 . . . cn+2)∞, the itineraries of folding points are periodic of
period n ≥ κ. Thus (κ + 1)|n. If κ + 1 = n, since cn+2 = 1 it holds that c3 . . . cn+2 =
0κ−111, which is even, a contradiction with Remark 7.23. From the circle of prime
ends we get that there can be at most two Type 3 accessible folding points and thus
n = 2(κ+ 1). Since #1(c3 . . . cn+2) is odd, it follows that . . . 0P 2k+1 �L . . . 1P 2k+1 and
. . . 0P 2k ≺L . . . 1P 2k for all k ∈ N, where P = c3 . . . cn+2. That is a contradiction with
Lemma 7.24. �

The following Example shows that for L as in 9.1 and ν of specific form there can exist
more than two fully accessible arc-components. In specific we improve the upper bound
on the number of fully accessible non-degenerate arc-components from three to four;
compare to Example 9.

Example 15. Assume ν is of the following form ν = 10κ10κ−1110 . . . with κ > 1. If
L = (0κ1)∞, then ϕL(X ′) has four fully-accessible dense arc-components. Note that
S = (10κ)∞ and note that for κ even we have L1κ+1 = (1110κ−110κ−1)∞11κ+1 and
S01κ+1 = (010κ−11110κ−2)∞01κ+1. For κ odd we get S1κ+1 = (1110κ−110κ−1)∞11κ+1 and
L01κ+1 = (010κ−11110κ−2)∞01κ+1. In any case, we get at least four accessible tails. To
see they are fully-accessible and dense we use the same arguments as in the proof of
Lemma 9.1.

The characterization of fully accessible arc-components of E-embeddings of X ′ (exclud-
ing the standard embeddings, see Section 10 and Section 11) is still outstanding. Thus
we pose the following question.

Question: Do there exist more than four fully accessible dense arc-components in non-
standard (Section 10 and Section 11) E-embeddings of X ′? Specifically, if c is periodic,
do there exist E-embeddings of X ′ so that more than four dense arc-components are
fully accessible?
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We suspect the answer is yes, but lack the symbolic techniques to make a general
construction. Note that for every n ∈ N there exists X ′ such that the Brucks-Diamond
embedding of X ′ has n fully-accessible (dense) arc-components. See [10] and Section 11.

10. Bruin’s embeddings ϕR(X ′)

In this section we study the core X ′ as the subset of the plane by the Bruin’s embedding
constructed in [16], i.e., for L = 1∞. Recall that we denote these embeddings by ϕR(X ′).
If the slope s = 2 and thus X ′ = X, it follows from Corollary 5.12 and Remark 7.4 that
R and C are both fully accessible and since there is no other folding point in Knaster
continuum except the endpoint, no other point from ϕR(X ′) is accessible. Thus from
the circle of prime ends we conclude that there exists exactly one simple dense canal for
ϕR(X ′). Therefore, we from now onwards restrict to cases when X 6= X ′ (i.e., s 6= 2).
Embeddings ϕR(X ′) can be viewed as global attractors of orientation reversing planar
homeomorphisms, since Bruin showed in [16] that σ : ϕR(X ′)→ ϕR(X ′) is extendable
to the plane.

Theorem 10.1. Say that X 6= X ′. In embeddings ϕR(X ′) the arc-component R is fully
accessible and no other point from ϕR(X ′) is accessible. There exists one simple dense
canal for every ϕR(X ′).

Proof. For embeddings given by Bruin in [16] it holds that L = 1∞ and thus UL = R.
We will explicitly calculate the tops/bottoms of an admissible cylinder [an . . . a1] ⊂
{0, 1}n for n ∈ N.

If #1(an . . . a1) equals (does not equal) to the parity of natural number n, then Lan...a1 =
1∞an . . . a1 (San...a1 = 1∞an . . . a1), since 1∞an . . . a1 is always admissible by Lemma 5.2.
Also, San...a1 = 1∞01kan . . . a1 (Lan...a1 = 1∞01kan . . . a1), where k ∈ N0 is the smallest
nonnegative integer such that 01kan . . . a1 is admissible.
Assume by contradiction that such k does not exists. Then 01ian . . . a1 ≺ c2c3 . . . for
every i ∈ N0. Since the word 01i is always admissible, it follows that c2c3 . . . = 01i for
every i ∈ N0, i.e., ν = 101∞ and the unimodal interval map which corresponds to this
kneading sequence ν is renormalizable, a contradiction.

There remains a prime end P on the circle of prime ends that is either of the second,
third, or fourth kind.
Assume first by contradiction that P is of the second kind, i.e., it corresponds to an
accessible folding point. Since σ : ϕR(X ′) → ϕR(X ′) is extendable to the plane, it
follows that P needs to correspond to accessible point ρ (since ρ̄ = . . . 11.11 . . . is the
only σ-invariant itinerary of a point in X ′). However, A(1∞) is the top or the bottom
of a cylinder, so ρ corresponds to a first kind prime end on the circle of prime ends, a
contradiction.
Therefore the remaining point P on the circle of prime ends is either of the third or the
fourth kind. Since R is dense in X ′ (see Proposition 1 from [13]) and R bounds the
canal in X ′ it follows that Π(P ) = X ′ and thus I(P ) = Π(P ) = X ′. Thus there exists
one simple dense canal for every ϕR(X ′). �
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11. Brucks-Diamond embeddings ϕC(X
′)

In this section we study the core X ′ as the subset of the plane by the Brucks-Diamond
embedding ϕC constructed in [14], i.e., for L = 0∞1. If the slope s = 2, i.e., X = X ′ is
the Knaster continuum, it follows from Corollary 5.12 and Remark 7.4 that UL = C is
fully accessible and that no other point from ϕC(X

′) is accessible (observe the circle of
prime ends). In specific there is no simple dense canal.
Thus we restrict to cases when X 6= X ′ (i.e., s 6= 2). Embeddings ϕC(X

′) can be viewed
as global attractors of orientation preserving planar homeomorphisms as described by
Barge and Martin in [6]. Therefore, σ : ϕC(X

′)→ ϕC(X
′) can be extended to a planar

homeomorphism. For ϕC(X) the set of accessible points is C and it forms an infinite
canal which is dense in the core. However, if C is stripped off, the set of accessible points
and the prime ends of ϕC(X

′) become very interesting. Recently Boyland, de Carvalho
and Hall gave in [10] a complete characterization of prime ends for embeddings ϕC of
unimodal inverse limits satisfying certain regularity conditions which hold also for tent
map inverse limits with indecomposable cores. In this section we obtain an analogous
characterization of accessible points as in [10] using symbolic computations. What this
sections adds to the results from [10] is the characterization of types of accessible folding
points, specially in the irrational height case (see the definitions below). By knowing the
exact symbolic description of points in X ′ we can determine whether they are folding
points or not, and if they are, whether they are endpoints of X ′. The classification of
accessible sets differentiates (as in [10]) according to the height of the kneading sequence
which we introduce shortly in this section (for more details see [20]).

We denote by L′ the left infinite itinerary which is the largest admissible sequence in
the embedding X ′ for L = 0∞1 (as in [14]) after C is removed. Therefore we need to
find which basic arc of X ′ is the closest to the basic arc A(0∞1). This was calculated
in [9].

Definition 11.1. Let q ∈ (0, 1
2
). For i ∈ N define

κi(q) =

{
b1
q
c − 1, if i = 1,

b i
q
c − b i−1

q
c − 2, if i ≥ 2.

If q is irrational, we say that the kneading sequence

ν = 10κ1(q)110κ2(q)110κ3(q)11 . . .

has height q or that it is of irrational type. If q = m
n

, where m and n are relatively
prime, we define

cq = 10κ1(q)110κ2(q)11 . . . 110κm(q)1,

wq = 10κ1(q)110κ2(q)11 . . . 110κm(q)−1.

By â we denote the reverse of a word a, so ŵq = 0κm(q)−1110κm−1(q)11 . . . 110κ1(q)1. We
say that a kneading sequence has rational height q if (wq1)∞ � ν � 10(ŵq1)∞. Denote
by lhe(q) := (wq1)∞, rhe(q) := 10(ŵq1)∞. If lhe(q) ≺ ν ≺ rhe(q) we say that ν is of
rational interior type, and rational endpoint type otherwise. Every kneading sequence
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that appears in the tent map family is either of rational endpoint, rational interior or
irrational type, see Lemma 8 and Lemma 9 in [9] (for further information see also [20]).

Remark 11.2. The values of κi(q) can be obtained in the following way (see Lemma
2.5 in [20] for details). Draw the graph Γζ of the function ζ : R→ R, ζ(x) = qx. Then
κi(q) = Ni − 2, where Ni is the number of intersections of the graph Γζ with vertical
lines x = N , N ∈ N0 in the segment [i− 1, i], see Figure 15. Note that it automatically
follows that the word κ1(q)κ2(q) . . . κm(q) is a palindrome and thus cq is a palindrome.
Furthermore, for every i ∈ N either κi(q) = κ1(q) or κi(q) = κ1(q)− 1.

Remark 11.3. Assume q = m/n is rational with m and n being relatively prime.
Take k ∈ {1, . . . , n − 1} such that dkqe − kq attains the smallest value; such k is
unique, since m and n are relatively prime. Denote by K = dkqe and note that for
every i ∈ {1, . . . , k} the line that joins (0, 0) with (k,K) intersects a vertical line in
[i − 1, i] if and only if qx intersects a vertical line in [i − 1, i]. Thus κ1(q) . . . κK(q) is
a palindrome; it is the longest palindrome among κ1(q) . . . κi(q) for i < m. By studying
the line which joins (k,K) with (n,m) we conclude that κK+1(q) . . . κm−1(q)(κm(q)− 1)
is also a palindrome, see Figure 15. Thus for every rational q there exist palindromes
Y, Z such that cq = Y 1Z01.

Remark 11.4. Note that {κi(q)}i≥1 is a Sturmian sequence for irrational q and thus
there exist infinitely many palindromic prefixes of increasing length (see e.g. [19], The-
orem 5) which are of even parity. This can also be concluded by studying the rational
approximations of q. Namely, if k ∈ N is such that diqe − iq achieves its minimum in
i = k for all i ∈ {1, . . . , k}, then the word κ1(q) . . . κk(q) is a palindrome. Note that
10κ1(q)11 . . . 110κk(q)1 is also a palindrome and it is an even word. By choosing better
rational approximations of q from above, we see that k can be taken arbitrary large, and
thus the beginning of cq consists of arbitrary long even palindromes.

Lemma 11.5. Let q = m
n

. Then there exists N ∈ N such that σN(rhe(q)) = lhe(q).

Proof. Recall that lhe(q) = (wq1)∞, rhe(q) = 10(ŵq1)∞, where cq = wq01. By Re-
mark 11.3, there exist palindromes Y, Z such that cq = Y 1Z01, so wq = Y 1Z. It
follows that lhe(q) = (Y 1Z1)∞ and rhe(q) = 10(Z1Y 1)∞ which finishes the proof. �

Remark 11.6. The height of a kneading sequence is the rotation number of the natural
mapping on the circle of prime ends. We will only need symbolic representation of the
height of a kneading sequence here; for a more detailed study of height see [20].

Definition 11.7. Given an infinite sequence −→x = x1x2x3 . . ., in this section we denote
its reverse by ←−x = . . . x3x2x1.

Lemma 11.8 ([9], Lemma 13). Let X ′ be embedded with ϕC. Denote by L′ the largest
admissible basic arc in X ′ and by ν the kneading sequence corresponding to X ′. Then,

L′ =

{←−−−
rhe(q), if lhe ≺ ν � rhe(q),
←−ν , if q is irrational or ν = lhe(q).
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Figure 15. Calculating κi(q) by counting the intersections of the
line qx with vertical lines over integers. The picture shows the val-
ues Ni for q = 9

20
. It follows that cq = 101111111101111111101 =

(101111111101)1(111111)01 = Y 1Z01. The decomposition into palin-
dromes Y, Z follows since d 9

20
ke − 9

20
k obtains its minimum for k = 11 =

b5
q
c (bold line in the figure).

11.1. Irrational height case. Assume that q is irrational and note that the map T
is then long-branched (since the kneading map is bounded, see [17]). Therefore, every
proper subcontinuum is a point or an arc (see Proposition 3 in [13]) and consequently,
every composant is an arc-component and thus either a line or a ray (every composant
of X ′ is dense in X ′ so an arc can not be a composant of X ′). We will show that the
basic arc A(L′) (which is fully accessible) contains an endpoint of X ′. Furthermore,
we will prove that the basic arc adjacent to A(L′) is not an extremum of a cylinder,
and thus contains a folding point which is not an endpoint. Therefore, the ray UL′ is
partially accessible; only a compact arc Q ⊂ UL′ is fully accessible and UL′ \ Q is not
accessible. Since σ is extendable, also σi(Q) is accessible for every i ∈ Z. Later in the
subsection we show that no other non-degenerate arc except of σi(Q) for every i ∈ Z is
fully accessible. From the circle of prime ends we then see that there is still a Cantor
set of points remaining to be associated to either accessible points or infinite canals of
ϕC(X

′). We prove that the remaining points on the circle of prime ends correspond
to accessible endpoints of ϕC(X

′) and are thus second kind prime ends. Moreover, we
prove that every endpoint from ϕC(X

′) is accessible. This is an extension of Theorem
4.46 from [10]. In this subsection the usage of variables m and n should not be confused
with the values in the fraction q = m

n
which will be used in the rational height case

later in the paper.

Lemma 11.9. If ν is of irrational type, then τR(L′) =∞ and A(L′) is non-degenerate.

Proof. If ν is of irrational type, then the bonding map T is long-branched, so every basic
arc in X ′ is non-degenerate. To prove the first claim, first note that by Lemma 11.8
it holds that L′ = ←−ν . Remark 11.4 implies that there exist infinitely many even
palindromes of increasing length at the beginning of ν. Thus there exists a strictly
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increasing sequence (mi)i∈N such that l′mi . . . l
′
1 = c1 . . . cmi and #1(c1 . . . cmi) is even for

every i. Thus it follows that τR(L′) =∞. �

The following remark follows from Remark 15 in [9] and the fact that we restrict our
study only on the tent map family.

Remark 11.10. If ν is of irrational or rational endpoint type, it holds that
←−
t ∈ {0, 1}∞

is admissible (i.e., every subword of
←−
t is admissible) if and only if

−→
t is admissible (i.e.,

every subword of
−→
t is admissible).

Lemma 11.11. Let ν be either of irrational or rational endpoint type and X ′ embedded
with ϕC. Then every extremum of a cylinder of ϕC(X

′) belongs to σi(L′) for some i ∈ Z.

Proof. Take an admissible finite word an . . . a1 ∈ {0, 1}n and pick the smallest k ∈
{0, . . . , n− 1} such that an . . . ak+1 = cn−k+1 . . . c2. If there is no such k we set k = n.

Assume first that k > 1 and note that ak = 1.
Assume that #1(ak−1 . . . a1) is even and let us calculate Lan...a1 . If admissible, the word
L′ak−1 . . . a1 is the largest in the cylinder [an . . . a1]. Assume that L′ak−1 . . . a1 is not
admissible. By Remark 11.10, since both L′ and ak−1 . . . a1 are admissible, there exists
i ∈ {1, . . . , k − 1} such that ai . . . ak−1l

′
1 . . . l

′
j is not admissible for some j ≥ 1. If

j ≤ n − k + 1, then ai . . . ak−1l
′
1 . . . l

′
j is a subword of a1 . . . an which is not admissible,

a contradiction. Assume that j > n− k + 1. In this case the word ai . . . ak−1l
′
1 . . . l

′
j *

a1 . . . an is not admissible, but then ai . . . an = c2 . . . c2+n−i which is a contradiction
with k being the smallest such that an . . . ak+1 = cn−k . . . c2. If #1(ak−1 . . . a1) is odd
we obtain that San...a1 = L′ak−1 . . . a1 using analogous arguments as above.
Now assume that #1(ak−1 . . . a1) is odd and we calculate Lan...a1 . Say that #1(an . . . ak)
is odd. Therefore, since we want to calculate the largest basic arc in the cylinder
[an . . . a1], we need to set Lan...a1 = . . . 1an . . . a1, and note that 1an . . . a1 is always
admissible by Lemma 5.2. Then, knowing that #1(an . . . ak) is odd it follows from the
special structure of ν in the irrational height case that the kneading sequence starts
as ak . . . an11 or ak . . . an0 and thus the word ak . . . an10 is admissible. It follows that
L′an . . . a1 is admissible and equals to Lan...a1 . If #1(an . . . ak) is even, it follows from
the structure of ν (blocks of ones in ν are of even length) that an = 1 and ak . . . an
ends in odd number of ones. The word ak . . . an0κ1(q) is thus admissible and therefore
Lan...a1 = L′an−1 . . . a1. Calculations for San...a1 when #1(ak−1 . . . a1) is even follow
analogously.

Now say that k = 1. Then Lan...a1 = L′. We conclude as in the preceding paragraph
that if #1(an . . . a1) is even, then San...a1 = L′an−1 . . . a1 and if #1(an . . . a1) is odd, then
San...a1 = L′an . . . a1.

If k = 0, then a1 . . . an = c2 . . . cn+1. So San...a1 = S = . . . c4c3c2. To calculate Lan...a1 ,
let k′ be the smallest natural number such that an . . . ak′ = cn−k′+1 . . . c1. If k′ does not
exist, set k′ = n+ 1. From the structure of ν (blocks of ones in ν are of even length) it
follows that #1(ak′−1 . . . a1) is odd. The rest of the proof for this case follows the same
as in the case for k > 1. �
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Lemma 11.12. Assume ν is of irrational type and X ′ embedded with ϕC. Then the
only basic arc from UL′ which is an extremum of a cylinder is A(L′).

Proof. Let an . . . a1 be an admissible word for some n ∈ N. If n = 1, note that L1 =
L′ ⊂ UL′ and L0, S0, S1 6⊂ UL′ , since ν is not (pre)periodic.
Now assume that n ≥ 2. Since ν is not (pre)periodic, the proof of Lemma 11.11 gives
that if Lan...a1 or San...a1 are contained in UL′ , then a1 . . . an = c1 . . . cn (since otherwise
Lan...a1 or San...a1 would be contained in σi(UL′) for some i ∈ Z \ {0}). But then,
following the proof of Lemma 11.11 it holds that Lan...a1 = L′ and San...a1 = L′an . . . a1

or San...a1 = L′an−1 . . . a1, depending on the parity of #1(an . . . a1). Since L′an . . . a1 ∈
σn(L′) and L′an−1 . . . a1 ∈ σn−1(L′) the only extremum of a cylinder in UL′ is A(L′). �

Remark 11.13. It follows from Lemma 11.12 that when ν has irrational height, then

UL′ is partially accessible. More precisely, from Proposition 5.14 it follows that
←−−
l(L′) =

. . . 110κ3(q)110κ2(q)110κ1(q)−111 contains a folding point p and A(L′) ∪ [a, p] is fully ac-

cessible, where a denotes the left endpoint of
←−−
l(L′). It follows from Corollary 3.3 that

no other point from UL′ (which is a ray) is accessible. Since σ : ϕC(X
′)→ ϕC(X

′) is ex-
tendable to the plane, also σi(A(L′)∪ [a, p]) is accessible for every i ∈ Z. In the lemmas
to follow we prove that the remaining Cantor set of points on the circle of prime ends
correspond to the endpoints of ϕC(X

′), and that all endpoints of ϕC(X
′) are accessible

when ν is of irrational type.

The following lemma follows directly from the fact that (κi(q)) is Sturmian, but we
prove it here for the sake of completeness. Say that q ∈ (0, 1

2
) is irrational. Denote by

κ = κ1(q), so κi(q) ∈ {κ, κ− 1} for every i ∈ N.

Lemma 11.14. Let q ∈ (0, 1
2
) be irrational. There exists J ∈ N such that if κi(q)κi+1(q)

. . . κi+N(q)κi+N+1(q) = κ(κ− 1)Nκ, then N ∈ {J, J + 1}.

Proof. Let J ∈ N be such that κ2(q) = . . . = κJ+1(q) = κ − 1 and κJ+2(q) = κ. So
there exists a sequence of J consecutive (κ − 1)s. Denote by Hn = bn

q
c for n ∈ N and

note that the function g : N → R given by g(k) = dkqe − kq achieves its minimum on
[0, HJ+2] in HJ+2 (since J + 2 is minimal index I > 1 for which κI = κ). If we translate
the graph of function ζ(x) = qx by +δ where δ ∈ (0, g(HJ+2)], then the sequence of
consecutive number of intersections with vertical lines over integers begins again with
(κ + 2)(κ + 1)J(κ + 2). Since g restricted to [0, HJ+2) achieves its minimum in H1, if
δ ∈ (g(HJ+2), g(H1)), the sequence corresponding to the number of times the graph of
ζ + δ intersects vertical lines over integers begins with (κ + 2)(κ + 1)J+1(κ + 2), see
Figure 16. Fix i ≥ 2 such that κi(q) = κ. Note that then g(Hi−1 + 1) < g(H1) since
otherwise qHi−1 > i − 1 which is a contradiction. So the graph of ζ on [Hi−1 + 1,∞)
can be obtained from the graph of ζ on [0,∞) by translating it by +δ for δ ∈ (0, g(H1))
which finishes the proof. �

Lemma 11.15. Let q ∈ (0, 1
2
) be irrational and i, N ∈ N such that κi+1(q) . . . κi+N(q) =

κ1(q) . . . κN(q) and κi+N+1(q) 6= κN+1(q). Then κ1(q) . . . κN+1(q) is a palindrome.
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Figure 16. The graph of qx for q ≈ 0.4483 . . . with the number of
intersections with vertical integer lines on the left. Dashed line represents
the graph of qx translated by δ ∈ (g(HJ+2), g(H1)). On the right we count
the intersections of the translated graph with vertical integer lines.

Moreover, κi+N+2(q) = κ1(q). If K ∈ N is such that κi+N+2(q) . . . κi+N+K+1(q) =
κ1(q) . . . κK(q) and κi+N+K+2(q) 6= κK+1(q), then κK+1(q) . . . κ1(q)κi+N+1(q) . . . κi+1(q)
= κ1(q) . . . κK+N+1(q).

Proof. For i ∈ N denote by Hi = b i
q
c and let f : N → R be given by f(x) = xq −

bxqc. Note that the graph of ζ(x) = qx restricted to [Hi + 1,∞) is a translation
of the graph of ζ on [0,∞) by some δ > 0 (see e.g. Figure 16). The conditions
κi+1(q) . . . κi+N(q) = κ1(q) . . . κN(q) and κi+N+1(q) 6= κN+1(q) imply that the global
minimum of f on [Hi, Hi+N+1 + 1] is Hi+N+1 + 1. So the graph of ζ − f(Hi+N+1 + 1)
on [Hi, Hi+N+1 + 1] intersects vertical lines over integers the same number of times
as ζ except for the point (Hi+N+1 + 1, i + N + 1). We conclude that (κi+N+1(q) +
1)κi+N(q) . . . κi+1(q) = κ1(q) . . . κN+1(q) which concludes the first part of the proof. To
see that κi+N+2(q) = κ1(q) use Lemma 11.14.
For the last part of the proof assume that K ∈ N is such that κi+N+2(q) . . . κi+N+K+1(q)
= κ1(q) . . . κK(q) and κi+N+K+2(q) 6= κK+1(q). That implies that the global minimum
of f on [Hi, Hi+N+K+2 + 1] is Hi+N+K+2 + 1. Again by translating the graph of ζ on
[Hi, Hi+N+K+2 + 1] by −f(Hi+N+K+2 + 1) we conclude the second part of the proof, see
Figure 17. �

Lemma 11.16. If ν is of irrational type or ν = lhe(q), then every endpoint of ϕC(X
′)

is accessible.

Proof. Let e ∈ X ′ be an endpoint and let←−e denote the left infinite symbolic description
of e.
Assume that τR(←−e ) = ∞ and thus there exists a strictly increasing sequence (mi)i∈N
such that c1 . . . cmi = emi . . . e1 and #1(emi . . . e1) is even. Assume (mi)i∈N is the com-
plete sequence for e (see Definition 7.5).
Assume that for infinitely many i ∈ N there exist admissible left infinite itineraries
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Figure 17. Graphic representation of the proof of Lemma 11.15 for
q ≈ 0.443 . . .. Dashed line represents the graph of ζ(x) = qx on [Hi +
1, Hi+N+K+2 + 1] translated by −f(Hi+N+K+2 + 1). On the right side of
the grid we count intersections of the dashed line with vertical integer
lines.

←−x O(i) ≺L ←−e ≺L xI(i) so that ←−x O(i),←−x I(i) → ←−e as i → ∞, ←−x O(i),←−x I(i) differ only at
the index mi + 1 and equal c1 . . . cmi on the first mi places (if we are able to construct
such ←−x O(i),←−x I(i) the arcs will cap the endpoint e which would thus be inaccessible -
compare with the proof of Theorem 7.12). So, ←−x O(i) and ←−x O(i) are of the form:

←−x I(i) = . . . 110κ1(q)110κ2(q)11 . . . 110κj(q)1.

←−e = . . . 110κ1(q)110κ2(q)11 . . . 110κj(q)1.

←−x O(i) = . . . 010κ1(q)110κ2(q)11 . . . 110κj(q)1.

Note first that 0emi . . . e1 is indeed admissible. Since #1(emi . . . e1) is even it holds that
←−x O(i) ≺L ←−e for every i ∈ N. Thus we need to find ←−x I(i) �L ←−e in order to cap e.
Denote by J ∈ N the smallest natural number such that

←−e = . . . 110κJ (q)−1110κJ−1(q)11 . . . 110κ2(q)110κ1(q)110κ2(q)11 . . . 110κj(q)1.

By Lemma 11.15 it follows that κJ(q) . . . κ2(q)κ1(q) is a palindrome and thus 10κJ (q)11
0κJ−1(q)11 . . . 110κ2(q)11 equals the beginning of ν.

We want to find←−x I(i) � ←−e . Note that none of 00κ2(q)110κ1(q), . . . , 00κJ−1(q)11 . . . 110κ1(q)

are admissible. If we set

←−x I(i) = . . . 00κJ (q)−1110κJ−1(q)11 . . . 110κ2(q)110κ1(q)11 . . . 110κj(q)1,

then also

←−x O(i) = . . . 00κJ (q)−1110κJ−1(q)11 . . . 110κ2(q)010κ1(q)11 . . . 110κj(q)1.

But since 100κJ (q)−1110κJ−1(q)11 . . . 110κ2(q) equals the beginning of ν, the word 00κJ (q)−111
0κJ−1(q)11 . . . 110κ2(q)0 is not admissible, a contradiction.
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Thus we need to set
←−x I(i) = . . . 110κJ (q)−1110κJ−1(q)11 . . . 110κ2(q)110κ1(q)11 . . . 110κj(q)1.

By Lemma 11.14 it follows that
←−e = . . . 110κ1(q)110κJ (q)−1110κJ−1(q)11 . . . 110κ2(q)110κ1(q)110κ2(q)11 . . . 110κj(q)1.

Now take the smallest K ∈ N such that
←−e = . . . 110κK+1(q)−1110κK(q)11 . . . 110κ1(q)110κJ (q)−11

10κJ−1(q)11 . . . 110κ2(q)110κ1(q)110κ2(q)11 . . . 110κj(q)1.

By Lemma 11.15 it follows that 10κK+1(q)11 . . . 110κ1(q)110κJ (q)−1110κJ−1(q)11 . . . 110κ2(q)11
is the beginning of ν. Thus we analogously argue that

←−x I(i) = . . . 110κK+1(q)−1110κK(q)11 . . . 110κ1(q)110κJ (q)−11

10κJ−1(q)11 . . . 110κ2(q)110κ1(q)110κ2(q)11 . . . 110κj(q)1,

which agrees with ←−e . Continuing inductively we conclude that ←−x I(i) = ←−e . Thus e is
not capped. �

Remark 11.17. We can expand the definition of Type 3 folding point introduced in
the preperiodic orbit case. A point p will be called a Type 3 folding point, if it is not
an endpoint, it is accessible, and there is an arc p ∈ V ⊂ Up such that V \ {p} is not
accessible, see Figure 13.

Lemma 11.18. If ν is of irrational type or rational endpoint type and X ′ is embedded
with ϕC, then there are no Type 3 folding points.

Proof. Assume by contradiction that there is a basic arc←−x = . . . x2x1 and an accessible
folding point p ∈ A(←−x ) of Type 3. Since p is a folding point by Proposition 2.4 there
exist blocks of symbols of ν of increasing length in ←−x .

We claim that if cn . . . cn+k = cm . . . cm+k for some m,n ∈ N and there exists i ∈
{0, . . . , k} such that cn+i = 0, then #1(c1 . . . cn+k) = #1(c1 . . . cm+k) (then all the wig-
gles will accumulate on A(←−x ) from exactly one side of p as in Figure 11). Indeed, take
the largest such index i. Then it follows that cn . . . cn+i−1 = 1i. If i is even (odd) it
holds that #1(c1 . . . cn−1) is odd (even), which proves the claim.
Therefore, if for ←−x = . . . x2x1 there exists i ∈ {0, . . . k} such that cn+i = 0 and
xj . . . x1 = cn . . . cn+k it follows that A(←−x ) contains no Type 3 folding point.

Now assume that ←−x = 1∞. If κ1(q) > 1, then . . . 1101α �L ←−x �L . . . 1101α+1 for every
odd α ∈ N and both . . . 1101α and . . . 1101α+1 project to [T 2(c), T (c)], which is again a
contradiction with p being a Type 3 folding point.
If κ1(q) = 1, then ν = 101β0 . . . for some even β ∈ N. Then, basic arcs with symbolic
description 1∞01γ for every γ > β project to [T 2(c), T (c)] and we get an analogous
conclusion as in the preceding paragraph. �

Lemma 11.19. If ν is of irrational type, then there exist no third and fourth kind
prime ends corresponding to ϕC(X

′).
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Proof. Since the embedding ϕC(X
′) is realized as an alignment of basic arcs along

vertically embedded Cantor set connected with semi-circles, we can study crosscuts
which are vertical segments in the plane joining two adjacent cylinders, see Figure 3.
Note that every infinite canal is realized by such vertical crosscuts. Take two n-cylinders
A = [an . . . a1] and B = [bn . . . b1] for some n ∈ N, such that A �L B and A and B are
adjacent n-cylinders, i.e., there is no n-cylinder D such that A �L D �L B. We will
show that SA and LB have the same tail, i.e., they both belong to σi(L′) for some i ∈ Z.
Since the accessible subsets of σi(L′) are arcs of finite length, it follows immediately
that there cannot exist infinite canals for ϕC(X

′).

Take A and B as above and let m ∈ {0, . . . , n− 1} be the smallest nonnegative number
such that am+1 6= bm+1.
First assume that #1(am . . . a1) is odd. Then, SA = S0am...a1 and LB = L1am...a1 , since
A �L B are adjacent. Let k ∈ {1, . . . ,m − 1} be the smallest number such that
c2 . . . cm−k+2 = ak+1 . . . am1, (compare with the proof of Lemma 11.11). Assume first
that such k indeed exists. Since also c2 . . . c

∗
m−k+2 ⊂ SA is admissible, it follows that

#1(ak+1 . . . am) is odd. Thus, #1(ak . . . a1) is even and since ak = 1 it holds that
#1(ak−1 . . . a1) is odd. As in the proof of Lemma 11.11, we conclude that L1am...a1 =
L′1am . . . a1. The same conclusion follows in the case when k does not exist. Note that
k = m is not possible. Furthermore, since #1(ak . . . am) is odd, it follows from the
specific form of ν that S0am...a1 = L′0am . . . a1, which is always admissible. Therefore,
SA and LB have the same left infinite tail.
Now assume that #1(am . . . a1) is even. Then SA = S1am...a1 and LB = L0am...a1 , since
A �L B are adjacent. Let k ∈ {1, . . . ,m− 1} again be the smallest number such that
c2 . . . cm−k+1 = ak+1 . . . am1. By analogous arguments as in the preceding paragraph
we obtain that #1(ak−1 . . . a1) is even and thus as in the proof of Lemma 11.11, we
conclude that S1am...a1 = L′1am . . . a1. Furthermore, L0am...a1 = L′0am . . . a1 which is
always admissible. Again, SA and LB have the same left infinite tail. Therefore, it
holds that all the canals are finite, i.e., there exist no third and fourth kind prime ends
corresponding to ϕC(X

′). �

The following theorem follows directly from the preceding eight lemmas.

Theorem 11.20. If ν is of irrational type and X ′ is embedded with ϕC, then there
are countably infinitely many partially accessible rays of ϕC(X

′); these are the arc-
components which are symbolically described by a tail which is a shift of ←−ν . Each of
them contains an endpoint of ϕC(X

′) and accessible set is a compact arc which contains
that endpoint. Furthermore, there exist uncountably many accessible arc-components
which are accessible in a single point which is an endpoint of ϕC(X

′). All (uncountably
many) endpoints of ϕC(X

′) are accessible.

11.2. Rational endpoint case. Let q = m
n

. In this subsection we study ϕC(X
′) when

ν is either rhe(q) or lhe(q). We provide a symbolic proof of Theorem 4.66 from [10].

When ν = lhe(q) = (wq1)∞ it follows that L′ =
←−−−
lhe(q). In Remark 11.3 we argued that

there exist palindromes Y, Z such that lhe(q) = (Y 1Z1)∞, thus
←−−−
lhe(q) = (1Z1Y )∞.
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Note that both Y and Z are even, from which we conclude that τR(L′) = ∞. Thus
the right endpoint of A(L′) is also an endpoint of X ′ and since there are no other
folding points on UL′ except of this endpoint, the ray UL′ is a fully accessible. Since
σ is extendable to the plane it follows that σi(UL′) are fully accessible for every i ∈
{0, 1, . . . , n− 1} (where n is the period of lhe(q)). Lemma 11.11 assures that the union
of n rays is indeed the complete set of accessible points of ϕC(X

′) for ν = lhe(q). Thus
the circle of prime ends decomposes into n half-open intervals, where the endpoints
represent the endpoints of X ′. Summarizing, we have the following theorem:

Theorem 11.21. If ν = lhe(q) for some q = m
n

, where m and n are relatively prime,
then in ϕC(X

′) there exist n fully accessible rays which are symbolically described by a
tail which is a shift of ←−ν and no other point from ϕC(X

′) is accessible. Specifically,
there exist no infinite canals in ϕC(X

′).

When ν = rhe(q) it holds by Lemma 11.8 that L′ =
←−−−
rhe(q) = (1Y 1Z)∞01. Since Y

starts with 1 it holds that there exists a folding point p ∈ UL′ on a basic arc with

itinerary
←−−
l(L′) = (1Y 1Z)∞11. Since rhe(q) is strictly preperiodic it follows that left

tail of
←−−
l(L′) always differs from

←−−−
rhe(q), so Lemma 11.11 implies that

←−−
l(L′) is not an

extremum of any cylinder. Proposition 5.14 implies that p is Type 2 folding point and
consequently UL′ is partially accessible. Moreover, since UL′ contains no other folding
points we conclude that one component of UL′ \ {p} is fully accessible and the other
component of UL′ \{p} is not accessible. Since σ is extendable, σi(UL′) are also partially
accessible. Lemma 11.11 implies that the circle of prime ends decomposes into n half-
open intervals and their endpoints are representing the accessible folding points of Type
2. Thus we obtain the following theorem:

Theorem 11.22. If ν = rhe(q) for some q = m
n

, where m and n are relatively prime,
then in ϕC(X

′) there exist n partially accessible lines which are symbolically described
by a tail which is a shift of←−ν and no other point from ϕC(X

′) is accessible. Specifically,
there exist no infinite canals in ϕC(X

′).

11.3. Rational interior case. Assume q = m
n

, where m and n are relatively prime. We
will show that in the rational interior case there exist n fully accessible arc-components
which are dense lines in X ′. We show that folding points which are not lying in the
extrema of cylinders are not accessible, so the remaining n points on the circle of prime
ends are simple dense canals. That is an analogue of Theorem 4.64 from [10] for tent
inverse limits.

Lemma 11.23 (Theorem 16 in [9]). Suppose that ν is of rational interior type for

q = m/n, where m and n are relatively prime. Then a sequence
←−
t ∈ {0, 1}∞ which

does not belong to C is admissible if and only if

(a) σi(
←−
t ) � rhe(q) for all i ∈ N,

(b) σi(
←−
t ) � lhe(q) for all i ∈ N for which σi(

−→
t ) � σn+1(ν).
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Lemma 11.24. Say that q = m/n, where m and n are relatively prime. If lhe(q) ≺
ν ≺ rhe(q), then all the extrema of cylinders of ϕC(X

′) have tails in σi(L′) for some
i ∈ Z.

Proof. Fix an arbitrary admissible word bj . . . b1 for some j ∈ N.

We calculate top/bottom of the cylinder [bj . . . b1]. Assume that bj . . . b1 � σn+1(ν)

and #1(bj . . . b1) is even (odd). We first show that if
←−−−
lhe(q)bj . . . b1 is admissible,

then it equals Lbj ...b1(Sbj ...b1). Assume by contradiction that there exists an admissi-

ble . . . x2x1bj . . . b1 �
←−−−
lhe(q)bj . . . b1 (. . . x2x1bj . . . b1 ≺

←−−−
lhe(q)bj . . . b1). Then . . . x2x1 �←−−−

lhe(q) (. . . x2x1 �
←−−−
lhe(q)). But that combined with bj . . . b1 � σn+1(ν) gives by (b)

from Lemma 11.23 that . . . x2x1bj . . . b1 �
←−−−
lhe(q)bj . . . b1 is not admissible, a contra-

diction. Similarly we show that if bj . . . b1 � σn+1(ν), #1(bj . . . b1) is even (odd) and
←−−−
rhe(q)bj . . . b1 is admissible, then it equals Lbj ...b1(Sbj ...b1).

In the next two paragraphs we prove that the sequences of the form
←−−−
rhe(q)bj . . . b1 and

←−−−
lhe(q)bj . . . b1 in special case to which we restrict later in the proof satisfy conditions
(a) and (b) from Lemma 11.23 and are thus admissible.

If bi+1 . . . bj does not equal the beginning of rhe(q) for any i ∈ {0, . . . , j − 1}, then

the sequences
←−−−
rhe(q)bj . . . b1 and

←−−−
lhe(q)bj . . . b1 satisfy (a) from Lemma 11.23. Assume

there is an index i ∈ {0, . . . j − 1} such that bi+1 . . . bj is the beginning of rhe(q) and
take the smallest such i ∈ {0, . . . , j − 1}. Assume #1(bi+1 . . . bj) is odd (later in the
proof we need only this special case). If bα+1 . . . bj is also the beginning of rhe(q) for
some α ∈ {0, . . . , j − 1}, where α ≥ i, then #1(bα+1 . . . bj) is also odd. Note that

bα+1 . . . bj10 ≺ rhe(q) for every such α. Thus
←−−−
rhe(q)bj . . . b1 and

←−−−
lhe(q)bj . . . b1 satisfy

condition (a) from Lemma 11.23.

If for every i ∈ {1, . . . , j} either bi . . . b1 � σn+1(ν) or bi+1 . . . bj is not the beginning

of lhe(q), then
←−−−
rhe(q)bj . . . b1 and

←−−−
lhe(q)bj . . . b1 satisfy (b) from Lemma 11.23. As-

sume there is i < j such that bi . . . b1 � σn+1(ν) and bi+1 . . . bj is the beginning of
lhe(q) and take the smallest such index i. If #1(bi+1 . . . bj) is odd (as in the paragraph
above, later in the proof we need only this special case) and there is β ∈ {i, . . . , j − 1}
such that bβ+1 . . . bj is also the beginning of lhe(q), then #1(bβ+1 . . . bj) is also odd

and thus bβ+1 . . . bj10 ≺ lhe(q) for every such β. We conclude that
←−−−
rhe(q)bj . . . b1 and

←−−−
lhe(q)bj . . . b1 satisfy condition (b) from Lemma 11.23.

Recall that L′ =
←−−−
rhe(q) = (1wq)

∞01.

Fix an admissible word aN . . . a1 ∈ {0, 1}N for some N ∈ N. Let k ∈ {1, . . . , N}
be, if existent, the smallest index such that ak . . . a1 � σn+1(ν) and ak+1 . . . aN is the
beginning of lhe(q). We set k = N when aN . . . a1 � σn+1(ν) (then ak+1 . . . aN = ∅ is
the beginning of lhe(q)). Let k′ ∈ {0, 1, . . . , N − 1} be the smallest index such that
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k, k′
k ≤ k′

k > k′ or no kak . . . a1

ak′ . . . a1

odd (even)

←−−−
lhe(q)ak . . . a1

even (odd)

ak′ . . . a1

even (odd) odd (even)

aN . . . ak′+1

� σn+1(ν)

←−−−
lhe(q)ak′ . . . a1

←−−−
rhe(q)ak′ . . . a1

� σn+1(ν)

aN . . . a1

odd (odd)

aN−1 . . . a1

even (even)

� σn+1(ν)

←−−−
rhe(q)aN−1 . . . a1

� σn+1(ν)

←−−−
lhe(q)aN−1 . . . a1

� σn+1(ν)

←−−−
lhe(q)aN . . . a1

� σn+1(ν)

←−−−
rhe(q)aN . . . a1

Figure 18. Calculating the LaN ...a1 and SaN ...a1 in the rational interior
case. The graph should be read as follows: if we want to calculate LaN ...a1
we read the terms outside of the brackets and to calculate SaN ...a1 we read
the terms inside the brackets. Say we want to calculate LaN ...a1 (SaN ...a1).
We first calculate k and k′ and compare them. Say k > k′ or k does not
exist. We move down the right branch. Next we calculate the parity of
ak′ . . . a1. Say it is even (odd), then we move down the left branch. If

ak′ . . . a1 � σn+1(ν) then LaN ...a1 =
←−
lheak′ . . . a1 (SaN ...a1 =

←−
lheak′ . . . a1)

and if ak′ . . . a1 � σn+1(ν) then LaN ...a1 =
←−
rheak′ . . . a1 (SaN ...a1 =

←−
rheak′ . . . a1).

ak′+1 . . . aN equals the beginning of rhe(q). Note that if ai = 1 for some i ∈ {1, . . . , N},
then such k′ exists. If aN . . . a1 = 0N , then LaN ...a1 =

←−−−
rhe(q)0N and SaN ...a1 = S =

(1wq)
∞0.

If ai = 1 for some i ∈ {1, . . . , N}, the diagram in Figure 18 provides an algorithm to
calculate LaN ...a1 (SaN ...a1).

To see that the defined sequences are indeed LaN ...a1 (SaN ...a1) we use the first part

of the proof. For example, take the case where the algorithm gives
←−
lheaN . . . a1. Since

aN . . . a1 � σn+1(ν) and #1(aN . . . a1 = aN . . . ak′+1ak′ . . . a1) is even (odd), if
←−
lheaN . . . a1

is admissible then it equals LaN ...a1 (SaN ...a1). To see that it satisfies (a), note that
#1(aN . . . ak′+1) is odd by assumption. To see that is satisfies (b), assume first that
there exists k and k ≤ k′. Then #1(ak+1 . . . ak′) is even and thus #1(aN . . . ak+1) is
odd. If k does not exists, we are done. If k > k′, then since ak′+1 . . . aN is the beginning
of rhe(q) and ak+1 . . . aN is the beginning of lhe(q) it follows that #1(ak′+1 . . . ak) is
even and thus #1(ak+1 . . . aN) is of the same parity as #1(ak′+1 . . . aN), which is odd.
That finishes the proof in this case. Other cases follow using analogous computations.
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Note that if #1(aN . . . ak′+1) is even, then since ak′+1 . . . aN is the beginning of rhe(q)
it follows that aN = 1 and thus #1(aN−1 . . . ak′+1) is odd (this is needed in the proof of
the two cases in the right branch of Figure 18). �

Lemma 11.25. Say that q = m/n, where m and n are relatively prime. If lhe(q) ≺
ν ≺ rhe(q), then every admissible itinerary in σi(UL′) is realized as an extremum of a
cylinder of ϕC(X

′).

Proof. Assume that ←−x = . . . x2x1 is an admissible tail and that there exists K ∈ N0

such that . . . xK+2xK+1 =
←−−−
lhe(q) and take K the smallest index with that property.

Denote by lhe(q) = (wq1)∞ = (y1 . . . yn)∞ and note that rhe(q) = 10(ŵq1)∞ and thus
σn+1(rhe(q)) = (1ŵq)

∞ = (yn . . . y1)∞. Since rhe(q) � ν and they agree on the first
n+1 places (which equal cq and which is a word of even parity, for details see e.g. [10]),
it follows that σn+1(rhe(q)) � σn+1(ν). Let J ∈ N be the smallest natural number such
that (yn . . . y1)J � σn+1(ν). We study the cylinder Y = [yn . . . y1(yn . . . y1)JxK . . . x1].
Note that xi . . . xK(y1 . . . yn)J+1 does not agree with the beginning of lhe(q) for any
i ∈ {1, . . . , K}. Also yi . . . yn(y1 . . . yn)j does not agree with the beginning of lhe(q) for
any i ∈ {2, . . . , n} and any j ∈ N. Denote by aN . . . a1 = yn . . . y1(yn . . . y1)JxK . . . x1.
Let k ∈ {1, . . . , N} be, if existent, the smallest index such that ak . . . a1 � σn+1(ν) and
ak+1 . . . aN is the beginning of lhe(q) (compare with the definition of k in the proof of
Lemma 11.24). By the choice of J it follows that k indeed exists and k ∈ {K + Mn :
M ∈ {0, . . . , J}}. So, if for any i ∈ {0, . . . , K − 1} the word xi+1 . . . xK(y1 . . . yn)J+1

does not equal the beginning of rhe(q), then Lemma 11.24 implies that ←−x = LY or
←−x = SY , depending on the parity of #(xK . . . x1).
If there is α ∈ {0, . . . , K − 1} such that the word xα+1 . . . xK(y1 . . . yn)J+1 equals the
beginning of rhe(q), then xα . . . x1 � σn+1(ν) (otherwise Y does not satisfy (b) from

Lemma 11.23 and is thus not admissible). Lemma 11.24 implies that
←−−−
rhe(q)xα . . . x1

equals LY or SY , depending on the parity of #(xα . . . x1). Since the tails of rhe(q) and

lhe(q) are shifts of one another and J ≥ 1 it follows that ←−x =
←−−−
rhe(q)xα . . . x1, which

concludes the proof. �

Theorem 11.26. Say that q = m/n, where m and n are relatively prime. If lhe(q) ≺
ν ≺ rhe(q), then in ϕC(X

′) there exist n fully accessible arc-components which are dense
lines in X ′ and n simple dense canals. Moreover, a point from ϕC(X

′) is accessible if
and only if it belongs to one of these n lines.

Proof. Lemma 11.24 shows that all the extrema of cylinders have tails in σi(L′) for some
i ∈ Z and Lemma 11.25 shows that every admissible itinerary in σi(UL′) is realized as
an extremum of a cylinder. Since L′ is preperiodic of preperiod n, we obtain n fully
accessible lines in ϕC(X

′). Thus the circle of prime ends can be decomposed into n open
intervals and their n endpoints. We claim that the endpoints correspond to simple dense
canals.
Assume by contradiction that a folding point x ∈ ϕC(X ′) is accessible. Then its every
shift σj(x) needs to be accessible for some natural number j which divides n (denoted
from now onwards by j|n). We conclude that the tail corresponding to the point x must
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be periodic of period j|n, i.e., σj(x) = x. Note that there are no periodic kneading
sequences ν of period j|n for lhe(q) ≺ ν ≺ rhe(q) since lhe(q), rhe(q) and ν agree on the
first n−1 places. Thus the basic arc←−x has τL(←−x ), τR(←−x ) finite. Specially, the basic arc
←−x contains no endpoint of X ′ and x is the only accessible point in←−x and it thus needs
to be Type 3 folding point. Write←−x = . . . x3x2x1. Since x is a folding point and not an
endpoint, there exist arbitrarily large M,ki ∈ N such that xM . . . x1 = cki+1 . . . cki+M
and xM+1 6= cki . Now we proceed similarly as in Proposition 7.17. Fix a cylinder
around ←−x and assume that all long basic arcs in that cylinder lie below (above) ←−x .
Here long basic arcs ←−y are such that π0(x) ∈ Int (π0(←−y )). Specially, for M large
enough and when ckicki+1 . . . cki+M 6= c2 . . . cM+2, the basic arcs 1∞ckicki+1 . . . cki+M
are long (if M > τL(x), τR(x) then π0(1∞ckicki+1 . . . cki+M) = [T τL(x), T τR(x)]). Basic
arcs in the chosen cylinder which do not project to [T τL(x), T τR(x)] are of the form
. . . 0

1
c1c2 . . . ckicki+1 . . . cki+M . Since cki 6= xM+1, it follows that those arcs are on the

same side of ←−x as long arcs 1∞ckicki+1 . . . cki+M . Since we assumed that all long basic
arcs lie on the same side of ←−x it follows that ←−x is an extremum of a cylinder, a
contradiction. The remaining case is when cki . . . cki+M = c2 . . . cM+2 for all (but finitely
many) i ∈ N. That is, whenever xM . . . x1 appears in the kneading sequence, then
xM . . . x1 = c3 . . . cM+2 and xM+1 6= c2 = 0. However, ←−x is periodic of period j|n and
x is a folding point, from which we conclude that T 3(c) is periodic of period j|n and
←−x = (c3 . . . cn+2)∞. Note that the only kneading sequence lhe(q) ≺ ν ≺ rhe(q) for which
T 3(c) is periodic of period j|n is 10(ŵq0)∞ which is actually periodic of period n. But
there are no periodic kneading sequences ν of period n such that lhe(q) ≺ ν ≺ rhe(q),
a contradiction. Thus no folding point x ∈ ϕC(X ′) is accessible.

We need to show that the n accessible lines are indeed dense in X ′. It follows from
Lemma 11.24 that the symbolic code of these n lines is eventually U i = σi(

←−−−
lhe(q)) for

i ∈ {0, . . . , n − 1}. Let a ∈ X ′ be a point with backward itinerary ←−a = . . . a2a1.
Note that for every β, every i ∈ {0, . . . , n − 1} and large enough γ the left infinite

sequences σi(
←−−−
lhe(q))1γaβ . . . a1 are admissible since they satisfy conditions (a) and (b)

from Lemma 11.23. Thus, sending β → ∞ we get a sequence of basic arcs from U i
converging to ←−a such that their π0 projections contain π0(a).

Therefore n prime ends P1, . . . , Pn on the circle of prime ends are either of the third
or the fourth kind. Since the shores of the canal are lines which are dense in both
directions it follows that Π(Pi) = I(Pi) = X ′ for every i ∈ {1, . . . , n}. Therefore, there
are n simple dense canals for every ϕC(X

′). �
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